簡易檢索 / 詳目顯示

研究生: 李振豪
Jhen-Hao Li
論文名稱: 鎳在鍺(111)-c(2x8)及銀/鍺(111)-(√3x√3)表面上的成長
Growth behavior of Nickel on Ge(111)-c(2x8) and Ag/Ge(111)-(√3x√3) surface
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 掃描穿隧顯微鏡
英文關鍵詞: scanning tunneling microscope(STM), Ni, Ag, Ge
論文種類: 學術論文
相關次數: 點閱:75下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在室溫下蒸鍍少量鎳原子於鍺(111)-c(2x8)重構之上,並以掃描穿隧顯微鏡觀測其在不同加熱退火溫度下的改變。隨著加熱退火溫度的提升,原先分散於樣品之上的原子團聚集並形成了四種具有不同結構的原子島。當加熱退火溫度再度提升之後,表面上的原子島全數消失,只剩下極少量不規則的原子團,推測消失的原子島已鑽入基底之下。
    在鍺(111)-c(2x8)重構之上蒸鍍銀並加熱退火使樣品表面轉變為銀/鍺(111)-(√3x√3)重構後,於室溫蒸鍍少量鎳原子並以掃描穿隧顯微鏡觀測其表面結構在不同加熱退火溫度下的改變並與鎳鍺系統的實驗結果比較,STM圖像顯示銀能夠保護基底不受鎳原子的破壞,然而在加熱退火溫度提升的過程中,原子島的總體積亦隨之上升,顯示銀並無法完全阻止鎳原子與基底形成合金。而在樣品表面上發現的三種不同結構的原子島中,其中一種未曾於鎳鍺系統中發現,代表銀在此系統中起了很大的作用。

    Depositing submonolayer of nickel atoms on the clean Ge (111)-c(2x8) substrate at room temperature, then investigating the difference of the surface in different annealing temperatures by scanning tunneling microscope. The clusters distributed on the surface form four kind islands when the annealing temperature rising. After annealing with higher temperature the islands disappear and we guess that the atoms diffuse into the substrate.
    We also do the experiment at Ag/Ge(111)-(√3x√3) surface, the scanning tunneling microscope images show that the silver buffer layer can prevent the formation of alloys, but the total volume of the clusters and islands on the surface increasing with the higher annealing temperature. That means silver can not prevent the formation of alloys at high temperature.
    After annealing, three kind islands appearing in different temperature region, only one of them can not be found in the Ni/Ge system. That means the silver atoms playe an important role in Ni/Ag/Ge system.

    中文摘要 I 英文摘要 II 目錄 III 第一章 緒論 1 第二章 實驗原理與方法 2.1 基本原理 4 2.1.1 穿隧效應 4 2.1.2 局域電子態密度 7 2.2 STM操作原理 8 2.2.1 定電流模式 9 2.2.2 定高度模式 10 第三章 實驗儀器 3.1 實驗裝置 11 3.2 真空幫浦 12 3.2.1 油封式機械幫浦 12 3.2.2 渦輪分子幫浦 13 3.2.3 離子幫浦 13 3.2.4 鈦昇華幫浦 14 3.3 真空壓力計 15 3.4 離子濺射槍 16 3.5 蒸鍍系統 17 3.5.1 電子束蒸鍍鎗 17 3.5.2 K-cell蒸鍍鎗 18 3.6 殘氣分析儀 19 3.7 掃描穿隧顯微鏡 20 3.7.1 掃描頭 21 3.7.2 步進器 21 3.7.3 避震裝置 22 3.7.4 電子控制系統 22 第四章 實驗步驟 4.1 實驗流程圖 23 4.2 前置作業 24 4.2.1 STM探針的製備 24 4.2-2 樣品製備 25 4.3 超高真空環境的建立 27 4.4 基底選擇及處理 29 4.4-1 鍺(111)-c(2×8)重構 29 4.4.2 銀/鍺(111)-(√3×√3)重構 30 第五章 實驗數據與討論 5.1 0.4 ML鎳在鍺(111)-c(2x8)表面的成長 31 5.1.1 在室溫下蒸鍍0.4 ML鎳於鍺(111)-c(2x8)表面 32 5.1.2 加熱至420 K 33 5.1.3 加熱至470 K 34 5.1.3 加熱至570 K 37 5.1.4 加熱至670 K 38 5.1.5 加熱至770 K 40 5.1.6 加熱至870 K 41 5.2 0.2 ML鎳在鍺(111)-c(2x8)表面的成長 42 5.2.1 在室溫下蒸鍍0.2 ML鎳於鍺(111)-c(2x8)表面 42 5.2.2 加熱至420 K 43 5.2.3 加熱至570 K 44 5.2.4 加熱至670 K 46 5.2.5 加熱至770 K 47 5.3 鎳在鍺(111)-c(2x8)表面形成的各種結構分析 48 5.3.1 環狀缺陷 48 5.3.2 3x3原子島 52 5.3.3 2√7 x 2√7原子島 55 5.3.4 7x7原子島 62 5.3.5 六角形原子島 63 5.4 不同鍍量鎳在鍺(111)-c(2x8)表面的比較 64 5.5 0.4 ML鎳在銀/鍺(111)-(√3x√3)表面的成長 67 5.5.1 在室溫下蒸鍍0.4 ML鎳於銀/鍺(111)-(√3x√3)表面 68 5.5.2 加熱至370 K 69 5.5.3 加熱至470 K 70 5.5.4 加熱至540 K 71 5.5.5 加熱至570 K 72 5.5.6 加熱至670 K 73 5.5.7 加熱至770 K 75 5.5.8 加熱至870 K 76 5.6 0.2 ML鎳在銀/鍺(111)-(√3x√3)表面的成長 77 5.6.1 在室溫下蒸鍍0.2 ML鎳於銀/鍺(111)-(√3x√3)表面 77 5.6.2 加熱至540 K 78 5.6.3 加熱至570 K 79 5.6.4 加熱至670 K 80 5.6.5 加熱至770 K 81 5.7 鎳在銀/鍺(111)-(√3x√3)表面形成的各種結構分析 82 5.7.1 三重洞與7x7原子島 82 5.7.2 六角形島 85 5.7.3 長條狀島 86 5.8 不同鍍量鎳在銀/鍺(111)-(√3x√3)表面的比較 89 5.9 鎳鍺系統與鎳銀鍺系統的比較 91 第六章 結論 93 參考資料 94

    [1]G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl. Phys. Lett. 40, 178 (1982)
    [2]G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)
    [3]G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 50, 120 (1983)
    [4]J. K. Furdyna and J. Kossut, Semiconductors and Semimetals Vol. 25, Academic (1986).
    [5]R. M. Feenstra and A. J. Slavin, Surf. Sci. 251-252, 401 (1991)
    [6]J. A. Kubby, and J. J. Boland, Surf. Sci. Rep. 26, 61 (1996)
    [7]A. Nash and P. Nash, Bulletin of Alloy Phase Diagrams, 8 (3), 255 (1987)
    [8]A. Nash and P. Nash, Bulletin of Alloy Phase Diagrams, 8 (3) (1987), p. 255
    [9]Shan Jin, Christian Leinenbach, Jiang Wang, Liliana I. Duarte, Simona Delsante, Gabriella Borzone, Andrew Scott, and Andrew Watson, Calphad, 38, 23 (2012)
    [10]M. Singleton and P. Nash, Bulletin of Alloy Phase Diagrams, 8 (2), 121 (1987)
    [11]R.W. Olesinski and G.J. Abbaschian,Bulletin of Alloy Phase Diagrams, 9 (1), 71 (1988)
    [12]林俊良,國立臺灣師範大學碩士論文 (2005)
    [13]趙智豪,國立臺灣師範大學碩士論文 (2010)
    [14]J. Yuhara, R. Ishigami, D. Ishikawa and K. Morita Surf. Sci. 328, 269 (1995)
    [15]R. Eisberg and R. Resnik, Quantum Physics of Atoms, Molecules, Solids, Nuclei and particles, 2nd Ed, Wiley (1985)
    [16]R. M. Feenstra, Surf. Sci. 603,2841 (2009)
    [17]J. Bardeen, Phys. Rev. Lett. 6, 57 (1961)
    [18]真空技術與應用,國科會精儀中心 (2001)
    [19]蘇清森,真空技術精華,五南 (2003)
    [20]User’s manual, High Vacuum Technology, Alcatel (1998)
    [21]Operating and Maintenance Handbook ST22 Titanium Sublimation Pump Cartridge, Vacuum Generators (2002)
    [22]UHV Bayard-Alpert Gauge Manual, Arun Microelectronics (2012)
    [23]EX03 Ion Gun Systems Operating Manual, VG Microtech (1999)
    [24]Instruction Manual UHV Evaporator EFM3/4 Triple Evaporator EFM3T, Omicron (1999)
    [25]Vacweld Miniature K-cell Effusion Source Operator’s Handbook, Vacweld (2003)
    [26]Instruction Manual Extorr XT series RGA, Extorr (2009)
    [27]Instruments for Surface Science, Omicron (2000)
    [28]表面分析儀器,國科會精儀中心 (1998)
    [29]R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Phys. Rev. Lett. 54,
    2678 (1985)
    [30]R. S. Becker, B. S. Swartzentruber, J. S. Vickers, and T. Klitsner, Phys. Rev. B 39, 1633 (1989)
    [31]E. S. Hirschorn, D. S. Lin, F. M. Leibsle, A. Samsavar, and T.-C. Chiang, Phys. Rev. B 44, 1403 (1991)
    [32]J. Aarts, A. J. Hoeven, and P. K. Larsen Phys. Rev. B 37, 8190 (1988)
    [33]R. M. Feenstra, J. Y. Lee, M. H. Kang, G. Meyer and K. H. Rieder, Phys. Rev. B 73,
    035310 (2006)
    [34]D. Grozea, E. Bengu and L.D. Marks, Surf. Sci. 461 23 (2000)
    [35]Charles Kittel, Introduction to Solid State Physics, 8th Ed, Wiley (2004)
    [36]H. Huang, H. Over, S. Y. Tong, J. Quinn and F. Jona, Phys. Rev. B 49, 13483
    (1994)
    [37]L.-W. Chou, H. C. Wu, Y.-R. Lee, J.-C. Jiang, C. Su, and J.-C. Lin, J. Chem. Phys.
    131, 224705 (2009)

    下載圖示
    QR CODE