簡易檢索 / 詳目顯示

研究生: 蘇柏瑋
論文名稱: 微粒體甲烷單氧化酵素之模型 三核銅金屬簇化物之研究
Models of the Particulate Methane Monooxygenase(pMMO): Trinuclear Copper Clusters
指導教授: 陳炳宇
Chen, Ping-Yu
李位仁
Lee, Way-Zen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 微粒體甲烷單氧化酵素三核銅金屬簇化物催化
英文關鍵詞: Particulate methane monooxygenases, Trinuclear copper clusters, Catalysis
論文種類: 學術論文
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,我們合成出全新的含氮配位基7-ImPy以及7-MeImPy,能與一價銅離子[CuI(CH3CN)4](BF4)配位形成三核銅簇離子化合物[CuICuICuI(7-ImPy)](BF4) 和 [CuICuICuI(7-MeImPy)](BF4),本實驗室先前的研究7-Dipy類似,可以抓三個銅金屬,形成三核銅金屬簇離子化合物。這類三核銅簇離子化合物能被氧氣活化形成di(-oxo)的高活性中間物,經由三核銅簇錯化合物的自旋態調控,使其中之一的氧原子被活化至1D狀態,此時會釋放出其中一個架橋氧原子,直接崁入烷類分子的C-H中,可將烷類轉化為醇類。在本篇研究中成功利用[CuICuICuI(7-ImPy)](BF4)和[CuICuICuI(7-MeImPy)](BF4)兩種系統在常溫常壓下將cyclohexane (C-H鍵能為99.3 kcal/mol) 氧化生成cyclohexanol和cyclohexanone,其中催化變得有選擇性,以cyclohexanol為主要產物。
    在本研究中使用微波合成取代了傳統的加熱方式,微波可以直接進行內部加熱,使合成含氮配位基的時間可以大幅度的縮短,並且增加純度,減少副產物的產生。
    為了證明我們的三核銅簇離子化合物的反應機構是經由單氧直接嵌入(O-atom insertion)而不是經由自由基反應,在三核銅簇離子化合物[CuICuICuI(7-ImPy)](BF4) 和 [CuICuICuI(7-MeImPy)](BF4)的催化反應過程中加入對自由基極為靈敏的化合物5,5-Dimethyl-Pyrroline-N-Oxide (DMPO),做室溫EPR的測試,發現在整個催化反應的過程中,並沒有偵測到DMPO與自由基反應的EPR訊號,由此證明了此三核銅簇離子化合物的反應機構是經由單氧直接嵌入而非自由基的反應路徑。

    In this study, two new ligands 7-Impy and 7-MeImpy have been synthesized, and they can coordinate with 3 equivalents of CuI ions to form a trinuclear copper complex [CuICuICuI(7-Impy)](BF4) and [CuICuICuI(7-MeImpy)](BF4). These ligands are similar to our previous developed 7-Dipy ligand in the scaffold to trap three CuI ions.
    It is known that the hydroxylation of alkane molecules catalyzed by trinuclear copper complexes through the “oxene” insertion mechanism. The active “oxene” with a “1D” spin state will have lower reaction energy barrier when it is tuned by three copper ions.
    In this study, these new catalysts, [CuICuICuI(7-ImPy)](BF4) and [CuICuICuI(7-MeImPy)](BF4), are also able to catalyze the oxidation of cyclohexane converting to cyclohexanol and cyclohexanone. Compared to our previous developed 7-Dipy ligand, the catalytic reaction is more favorable for the product of cyclohexanol.
    In this study, we replaced traditional heating by microwave for the ligand synthesis. Microwave can enhance internal heating efficiently, which significantly reduce the reaction time, increase the purity, and reduce the byproducts.
    In addition, for proving the reaction catalyzed by our trinuclear copper cluster via the O-atom insertion mechanism or radical mechanism, we designed a series of experiments using 5,5-Dimethyl-Pyrroline-N-Oxide (DMPO), which is very sensitive to radical. We added DMPO in catalytic reaction, and measured EPR while in the reaction. We found that there are no radical EPR peaks related to DMPO derivatives, similar to the case of 7-Dipy.

    致謝 I 摘要 IV Abstract VI 目錄 VIII 圖表目錄 X 附圖目錄 XVI 一 前言 1 二 實驗部分 18 2-1 藥品與儀器 18 2-2 3,3-(1,4-diazepane-1,4-diyl)bis(1-chloropropan -2-ol) 7-Cl之合成 20 2-3 4-(2-Pyridylmethylaminomethyl)imidazole Impy之合成 21 2-4 MeImpy之合成 22 2-5 7-Impy之合成 23 2-6 7-MeImpy之合成 24 2-7 製備 Cu(I) 化合物 25 2-8 三核銅金屬簇化物之合成 26 2-9 催化產物鑑定 27 三 結果與討論 28 3-1 微波合成 28 3-2 三核銅金屬簇離子化合物的形成與氧氣之反應 31 3-3 三核銅金屬簇離子化合物經氧氣氧化後電子吸收光譜 34 3-4 三核銅金屬簇離子化合物CV 37 3-5 三核銅金屬簇離子化合物之催化作用 39 3-6 三核銅金屬簇離子化合物催化反應時間追蹤研究 44 3-7 三核銅金屬簇離子化合物與H2O2反應時中間物之EPR研究 47 四 結論 52 五 參考資料 53

    1. Olah; George, A. Beyond oil and gas: The methanoleconomy; Wiley-VCH: Weinheim, ALLEMAGNE, 2005, 44.

    2. Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R., Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A-Chem. 2004, 220 (1), 7-25.
    3. Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E., Improved Attribution of Climate Forcing to Emissions. Science 2009, 326 (5953), 716-718.
    4. Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J.; Nordlund, P. Nature 1993, 366, 537.

    5. Lipscomb, J. D. Annu. Rev. Microbiol. 1994, 48, 371.

    6. Choi, D. W.; Kunz, R. C.; Boyd, E. S.; Semrau, J. D.; Antholine, W. E.; Han, J. I.; Zahn, J. A.; Boyd, J. M.; de la Mora, A. M.; DiSpirito, A. A. J. Bacteriol. 2003, 185, 5755.

    7. Chan, S. I.; Yu, S. S. F. Accounts Chem. Res. 2008, 41, 969.

    8. Chan, S. I.; Wang, V. C. C.; Lai, J. C. H.; Yu, S. S. F.; Chen, P. P. Y.; Chen, K. H. C.; Chen, C. L.; Chan, M. K. Angew. Chem.-Int. Edit. 2007, 46, 1992.

    9. Chen, P. P. Y.; Chan, S. I. J. Inorg. Biochem. 2006, 100, 801.

    10.Lieberman, R. L.; Rosenzweig, A. C., Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434 (7030), 177-182.

    11. Yu, S. S. F.; Chen, K. H. C.; Tseng, M. Y. H.; Wang, Y. S.; Tseng, C. F.; Chen, Y. J.; Huang, D. S.; Chan, S. I., Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 2003, 185 (20), 5915-5924.
    12. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J., Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43 (15), 4421-4430.
    13. Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon, E. I.; Stack, T. D. P. Science 1996, 273, 1848.

    14. Machonkin, T. E.; Mukherjee, P.; Henson, M. J.; Stack, T. D. P.; Solomon, E. I. Inorg. Chim. Acta. 2002, 341, 39.

    15. Root, D. E.; Henson, M. J.; Machonkin, T.; Mukherjee, P.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 4982.

    16.Peter, P. -Y. Chen; Richard B. –G. Yang, Jason C. –M. Lee and Sunney I. Chan*. Proc Natl Acad Sci U S A 2007, 104: 14570-14575.

    17.Szwarc, M. Proc. R. Soc. Lond., A 1951, 207, 5.
    18. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G., A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1996, 118 (4), 921-922.
    19. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J., Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): Probes for the mechanism of hydroxylation. J. Am. Chem. Soc. 1997, 119 (8), 1818-1827.
    20.Yoshizawa, K., Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. J. Inorg. Biochem. 2000, 78 (1), 23-34.
    21. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I., Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1997, 119 (42), 9949-9955.
    22. Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I., Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. ChemBioChem 2002, 3 (8), 760-765.
    23. Shilov, A. E.; Shul'pin, G. B., Chem. Rev. 1997, 97, 2879.
    24. Lu, Y.-R., Comprehensive Handbook of Chemicl Bond Energies. CRC, Taylor & Francis Group: Boca Raton FL, 2007.
    25.Whyman, R., Applied Organometallic Chemistry and Catalysis. Oxford University Press, Oxford: 2001.
    26. Shilov, A. E.; Shul'pin, G. B., Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
    27. Catalytic Activation and Functionalisation of Light Alkanes. In NATO ASI series, E. D. Derouane, J. Haber, F. Lemos, F. Ramoanes ed.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1998.
    28. Smeets, P. J.; Hadt, R. G.; Woertink, J. S.; Vanelderen, P.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. J. Am.Chem. Soc. 2010, 132, 14736.

    29. Kirillov, A. M.; Kopylovich, M. N.; Kirillova, M. V.; Haukka, M.; da Silva, M.; Pombeiro, A. J. L. Angew. Chem.-Int. Edit. 2005, 44, 4345.

    30.Eric Wellner, Helena Sandin,Paakonen, Synthesis, 2002, 2, 223-226
    31.W. S. Saari, A. W. Raab, S. W. King, J. Org. Chem. 1971, 36, 1711-1714.
    32. 簡佑芩,國立臺灣師範大學化學研究所碩士論文,2010.

    33. B. P. Bandgar, V. S. Sadavarte, and L. S. Uppalla , Chemistry Letters, 2000, No. 11,1304-1305.

    34. I. Rubinstein, S. Steinberg, Y. Tor, A. Shanzer, J. Sagiv, Natural, 1988, 31, 426-429.

    35. T. Ohta, T. Tachiyama, K. Yoshizawa, T. Yamabe, T. Uchida, T. Kitagawa, Inorg. Chem. 2000, 39, 4358.

    36. T. Okuno, S. Ohba, Y. Nishida, Polyhedron 1997, 16, 3765

    下載圖示
    QR CODE