簡易檢索 / 詳目顯示

研究生: 祁中浩
Chung-Hao Chi
論文名稱: 台灣中部山區森林林木多樣性與林分結構在海拔上的變化趨勢
Elevational patterns in tree species diversity and forest structure in central Taiwan
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 海拔梯度生物多樣性物種豐度生物量葉面積指數樹冠高度
英文關鍵詞: altitudinal, species richness, biomass, typhoon, LAI, canopy height
論文種類: 學術論文
相關次數: 點閱:85下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物多樣性、森林內林木的結構與葉面積指數等乃是森林生態研究上的重要參數,隨著森林生態研究尺度逐漸擴大,生態學者進一步比較不同緯度或海拔梯度森林之上述各參數所產生的變化與造成的機制。此類研究早期多在中南美洲等熱帶地區或生物多樣性熱點進行,且生物多樣性、生物量累積、樹冠高度、葉面積指數等在大部分的研究都顯示出統一的趨勢,即隨海拔高度而逐漸下降。由於台灣目前少有在海拔梯度上的比較,本研究於台灣中部尋找未受擾動的原生林或次生天然林進行調查,調查記錄樣區內所有高於1.3 m、胸高直徑(DBH)大於1 cm的林木之樹種、樹高與胸高直徑。生物多樣性以豐富度表示,研究並利用二種方法估算估算生物量。此外亦整理有關各個樣區之氣候背景資料,包括歷年之各月平均降雨量、年均溫、蒸發散量與颱風擾動的資料等,並嘗試利用上述資料來解釋生物多樣性、生物量、樹冠高度和葉面積指數在海拔梯度上的趨勢。研究結果顯示生物多樣性隨海拔梯度下降且主要應受到溫度的影響。生物量與樹高皆有隨海拔梯度而增加的趨勢,本研究推測(1)水份(隨海拔上升而增加) (2)颱風擾動(隨海拔而減弱) 可能為主要造成此特殊趨勢之機制。葉面積指數在海拔梯度上呈現駝峰狀,於中海拔最高而在低海拔最低,前人推論該趨勢可能與低海拔冬季時有乾旱有關,然而統2
    計結果無法支持該項推論;而上述影響冠層高度與生物量累積之颱風擾動或許亦可適用於解釋葉面積指數在海拔梯度上的變化趨勢。

    Biodiversity, forest structure and leaf area index (LAI) are important parameters in forest ecological research. Forest ecologists are interested in understanding changes in these parameters along latitudinal and altitudinal gradients. Early altitudinal studies were conducted in tropical regions (ex. Central and South America) or biodiversity hotspots (ex. Costa Rica) in 1970, and most studies reported a general decreasing trend in biodiversity, biomass accumulation, canopy height, and LAI along the altitudinal gradient. There are very few altitudinal studies in Taiwan, I investigated undisturbed forests in the central Taiwan to examine the patterns of biodiversity, canopy height, biomass, and LAI along the altitudinal gradient. All stem > 1cm and higher than 1.3m in plots were identified to species and diameter at breast height (DBH), and tree height were measured. Biodiversity is presented as species richness. Further, we utilized two equations to biomass estimate. We also collect information of important weather parameters including mean monthly precipitation, annual mean temperature, evapotranspiration and typhoon disturbance to explore their role on controlling the altitudinal pattern of forest structure. The results indicate that biodiversity decreased with increases in altitude and may be influenced by temperature. Biomass and tree height both decreases along the altitudinal gradient. Water availability (increases with elevation) and typhoon disturbance (decreases with elevation) probably contributed to the decreasing trend. LAI showed a “hump-shape” along the altitudinal gradient. Previous research infers that this tendency might be related to occasional drought at low altitude in winter and low temperature at highest altitude. However, statistical result is unable to suppose this inference. We propose that typhoon disturbance may also be important in causing low LAI value at lower elevations in addition to its effects on biomass and tree height.

    中文摘要 1 英文摘要 3 第一章 前言 5 一. 研究目的 5 二. 生物多樣性在海拔梯度上的研究 7 三. 森林重要特性--生物量、葉面積指數與樹冠高度 8 第二章 實驗方法 15 一. 樣區概述 15 二. 生物多樣性調查方法 19 三. 生物量的測量 20 四. 葉面積指數 21 五. 樹冠高度 22 六. 氣象因子 22 七. 統計分析 25 第三章 結果 26 一. 生物多樣性在海拔上的趨勢 26 二. 生物量在海拔上的趨勢 26 三. 樹高在海拔上的趨勢 27 四. 葉面積指數在海拔上的趨勢 27 五. 氣候因子 27 第四章 討論 29 一. 影響生物多樣性的因子 29 二. 生物量與樹冠層高度、葉面積指數在海拔上的特殊趨勢 29 參考文獻 36 圖目錄 FIG. 1. 半球面影像拍攝點於樣點內的分布形式 55 FIG. 2. 測量樹種高度的方法 55 FIG. 3. 蓮華池歷年平均蒸發散量與降雨量間的關係 56 FIG. 4. 樹種豐度在海拔上的趨勢 57 FIG. 5. 兩種公式估算生物量在海拔上的趨勢 58 FIG. 6. 總樣區生物量在海拔上的趨勢 59 FIG. 7. 樹高平均與樹冠高度平均在海拔梯度上的趨勢 60 FIG. 8. LAI在海拔上的趨勢 61 FIG. 9. 各海拔樣區近1992-2011之各月份平均雨量 62 FIG. 10. 乾季總雨量與年總雨量對各項參數的迴歸分析 63 FIG. 11. 2012年泰利颱風登陸後各海拔之風速 64 表目錄 TAB. 1. 各樣區之海拔、坡向、坡度與冠層優勢樹種概況 49 TAB. 2. 各樣區之氣象資料來源 50 TAB. 3. 各樣區紀錄之植物名錄 51

    王子定、姚榮鼐、顏秉貞、鄭欽龍 (1976) 森林生物量。中華林學季刊 9(4): 1-35。
    王子定、高敏斌 (1979) 再論森林生物量。中華林學季刊 12(3): 1-2。
    王義仲 (2010) 篩選淨化空氣污染物及固碳樹種,建立本土性GIS碳匯。環保署/國科會空污防制科研合作計畫成果報告。
    古心蘭 (1999) 合歡山台灣冷杉永久樣區之植群分析。國立東華大學自然資源管理研究所碩士論文。
    李宣德、馮豐隆 (2008) 森林碳吸存資源調查推估模式系統-以台灣樟樹為例。台灣林業科學 23: 15-26。
    林金樹 (1988) 空載多譜掃描資訊測估柳杉林分生物量之研究。國立台灣大學森林研究所博士論文。
    林國銓 (1989) 葉面積與林木生長及其環境。台灣省林業試驗所,生態原則下的森林經營研討會論文集 127-135頁。
    林國銓、洪富文、游漢明、馬復京 (1994) 福山試驗林闊葉林生態系生物量與葉面積指數的累積與分布。林業試驗所研究報告季刊 9(4): 299-315。
    林登秋 江智民 (2002) 半球面影像在森林生態研究的應用。台灣林業科學 17(3): 387-400。
    林登秋、林則桐、江智民、夏禹九、金恆鑣 (1999) 颱風對台灣東北部天然闊葉樹林林冠干擾之研究。中華林學季刊 32(1): 67-78。
    林裕仁、李國忠、林俊成 (2002) 以生物量與材積關係式推估臺灣地區森林林木碳貯存量之研究。臺大實驗林研究報告 16(2):71-79。
    金恆鑣、唐凱軍、黃正良、李聖餘 (1990) 合歡山玉山箭竹草原土壤之發育與分類。太魯閣國家公園管理處委託計畫成果報告。
    施鈞程 (2003) 台灣森林集水區之蒸發散量推估。國立中興大學水土保持學系碩士論文。
    洪富文、夏禹九、唐凱軍 (1986) 蓮華池次生暖溫帶山地與林地上部生物量及葉面積之估算。台灣省林業試驗所試驗報告第465號。
    孫正華、顏添明、李久先 (2011) 不同相對關係式推估針葉樹及竹類地上部生物量之比較。林業研究季刊 33(1):1-8。
    張必輝 (2002) 台大山地實驗農場梅峰地區不同經歷之土壤肥力特性與其上之植物營養特性。台灣大學農業化學研究所碩士論文。
    許富雄、姚正得、林瑞興、楊吉宗、賴肅如 (2004) 台灣南部地區的鳥種組成與海拔分布。特有生物研究6(2): 41-66。
    陳青香、林登秋、黃正良 (2007) 台灣中部蓮華池試驗林天然闊葉林與人工杉木林葉面積指數變動及其對初級生產力估算之影響。台灣林業科學 22(4): 423-439。
    陸象豫、黃良鑫、黃惠雪 (2008) 行政院農業委員會林業試驗所,林業試驗所蓮華池研究中心氣象紀錄彙整 (1997-2007)。
    彭炳勳、陳朝圳 (2008) 應用空載光達資料推測林木樹高與葉面積指數。航測及遙測學刊 13(2): 85-100。
    曾喜育、曾彥學、何伊喬、郭礎嘉、邱清安、呂金誠 (2011) 奧萬大楓林區辛樂克颱風後林木生長與存活研究。林業研究季刊 33(4): 1-20。
    馮豐隆、羅紹麟 (1986) 台灣二葉松人工林生長與收穫之研究。中華林學季刊 19(2): 17-31。
    黃可言 (2011) 鳥類物種豐富度與初級生產力在中台灣海拔梯度上的關係。國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
    黃正良、金恆鑣、陸象豫、廖學誠、陳明杰 (2002) 蓮華池試驗林森林水文研究之回顧分析。國立台灣大學農學院實驗林研究報告 16: 95-114。
    葛兆年、李培芬 (2003) 台灣北部繁殖鳥類之海拔分布型態。台灣林業科學18(4): 349-361。
    劉棠瑞、蘇鴻傑 (1983) 臺灣商務印書館,森林植物生態學 462 頁。
    鄭景鵬 (2010) 臺灣二葉松人工林生育地環境對林分結構、蓄積量與生物量影響之研究。國立嘉義大學森林暨自然資源學系研究所碩士論文。
    薛銘童、許博行 (2003) 關刀溪次生闊葉林地上部生物量與葉面積指數之研究。林業研究季刊 25(2) : 11-24。
    鍾國基 (2005) 萬大溪濱溪植群生態研究。國立嘉義大學林業暨自然資源研究所碩士論文。
    簡睿涵 (2010) 台灣木本植物多樣性影響因子之探討。國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文。
    葛兆年、李培芬 (2003) 台灣北部繁殖鳥類之海拔分布型態。台灣林業科學18(4): 349-361
    Aiba, S. and Aiba, S. and K. Kitayama. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140: 139-157.
    Bartelink, H. H. 1997. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann Sci For 54: 39-50.
    Blasco, F. (1984) Climatic factors and the biology of mangrove plants. The mangrove ecosystem: research methods. Monographs in Oceanographic Methodology 8: 18-35.
    Bolstad, P. V., J. M. Vose, and S. G. McNuIty. 2001. Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests. Forest Science 47: 419-427.
    Brown, S. 1997. Estimating biomass and biomass change of tropical forests: a primer. Forestry Paper 134, Food and Agriculture Organization, Rome, Italy.
    Burslem, D. F. R. P. and Whitmore, T. C. 1999. Species diversity, susceptibility to disturbance and tree population dynamics in tropical rain forest. Journal of Vegetation Science 10: 767-776.
    Chave, J. et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.
    Colwell, R. K. and D. C. Lees. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution 15: 70-76.
    Colwell, R. K. and G. C. Hurtt. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist 144: 570-595.
    Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310.
    Currie, D. J. and V. Paquin. 1987. Large-scale biogeographical patterns of species richness of trees. Nature 329: 326-327.
    Currie, D. J. 1991. Energy and Large-Scale Patterns of Animal- and Plant-Species Richness. The American Naturalist 137(1): 27-49.
    Don, J., R. K. Kaufmann, R. B. Myneni, C. J. Tucker, P. E. Kauppi, J. Liski, W. Buermann, V. Alexeyev, and M. K. Hughes. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment 84: 393-410.
    Fassnacht, k. S., S. T. Gower, J. M. Norman, and R. E. McMurtrie. 1994. A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology 71: 183-207.
    Fischer, A. G. 1960. Latitudinal variations in organic diversity. Evolution 14: 64-81.
    Fosaa, A. M. 2004. Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe islands. Diversity and Distributions 10: 217-223.
    Fritts, H. C. 1976. Tree rings and climate. Academic Press, London.
    Fukuda, M., T. Ieharaa, and M. Matsumoto. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 1-16.
    Gholz, H. L. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 63: 469-81.
    Gifford, R. M. 2000. Carbon contents of above-ground tissues of forest and woodland trees. National Carbon Accounting System technical report ; no. 22.
    Grubb, P.J. 1977. Control of forest growth and distribution on wet tropical mountains. Annual Review of Ecology & Systematics 8: 83-107.
    de Gouvenain, R. C. and J. A. Silander Jr. 2003. Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica 35(2): 166-180.
    Forsyth, E. 2006. Patterns of Typhoon Damage in Two Subtropical Forests. Candidate for Bachelor of Science in Environmental Science, Brown University.
    Harris, L. D. 1984. The fragmented forest: island biogeography theory and the preservation of biotic diversity. University Of Chicago Press, Chicago.
    Homeier, J., S. W. Breckle, S. Gu¨nter3, R. T. Rollenbeck, and C. Leuschner. 2010. Tree diversity, forest Structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42(2): 140-148.
    Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, New Jersey.
    King, H. B. 1986. The classification of two forest soils in Lien-Hua-Chi experimental watershed: an attempt to use USDA comprehensive system of soil classification. Bull Taiwan For Res Inst New Ser 1(2): 155-76.
    Koch, G.W., S. C. Sillett, G. M. Jennings, and S. D. Davis. 2004. The limits to tree height. Nature 428: 851-854.
    Lefsky, M. A., D. Harding, W. B. Cohen, G. Parker, and H. H. Shugart. 1999. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. REMOTE SENS. ENVIRON 67: 83-98.
    Lefsky, M. A., W. B. Cohen, D. J. Harding, G. G. Parker, S. A. Acker, and S. T. Gower. 2002. Lidar remote sensing of above-ground biomass in three biomes. Global Ecology & Biogeography 11: 393-399.
    Lieberman, D., M. Lieberman, R. Peralta, and G. S. HartshornSource. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137-152.
    Lin, K. C., S. P. Hamburg, S. L. Tang, Y. J. Hsia, and T. C. Lin. 2003. Typhoon effects on litterfall in a subtropical forest. Can. J. For. Res. 33: 2184-2192.
    Lim, K., P. Treitz, M. Wulder, B. St-Onge, and M. Flood. 2003. Lidar remote sensing of forest structure. Progress in Physical Geography 27: 88-106.
    Luo, T., R. P. Neilson, H. Tian, C. J. Vörösmarty, H. Zhu, and S. Liu. 2002. A model for seasonality and distribution of leaf area index of forests and its application to China. Journal of Vegetation Science 13: 817-830.
    Luo, T., Y. Pan, H. Ouyang, P. Shi, J. Luo, Z. Yu, and Q. Lu. 2004. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography 13: 345–358.
    Mabry, C. M., S. P. Hamburg, T. C. Lin, F. W. Horng, H. B. King, and Y. J. Hsia. 1998. Typhoon disturbance and stand-level damage patterns at a subtropical forest in Taiwan. Biotropica 30(2): 238-250.
    MacArthur, R. H. and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, New Jersey.
    Markley, J. L ., C. McMillan, and G. A. Thompson J R. 1982. Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Auicemza germinans, Laguncularia raceinosa and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany 60: 2704-27 15.
    Marrs, R. H., J. Proctor, A. Heaney, and M. D. Mountford. 1988. Changes in Soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. Journal of Ecology 76: 466-482.
    McNaughton, K. G. and P. G. Jarvis. 1983. Predicting effects of vegetation changes on transpiration and evaporation. In water deficits and plant growth. Academic, London, 7: 1-47.
    Menge, B. A. and J. Sutherland. 1976. Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. The American Naturalist 110: 351-360.
    Moser, D., S. Dullinger, T. Englisch, H. Niklfeld, C. Plutzar, N. Sauberer, H. G. Zechmeister, and G. Grabherr. 2005. Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography 32: 1117-1127.
    Moser, G., D. Hertel, and C. Leuschner. 2007. Atitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924-935.
    Moser, G., M. Ro¨derstein, N. Soethe, D. Hertel, and Leuschner, C. 2008. Altitudinal Changes in Stand Structure and Biomass Allocation of Tropical Mountain Forests in Relation to Microclimate and Soil chemistry. Ecological Studies, 198. Springer Verlag, Berlin, Heidelberg, pp. 229-242.
    National Greenhouse Gas Inventories Programme. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4.
    Neilson, R. P. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5: 362-385.
    Ohsawa, M. 1995. Latitudinal comparison of altitudinal changes in forest structure, leaf-type, and species richness in humid monsoon Asia. Vegetatio 121: 3-10.
    Orwig, D. A. and M. D. Abrams. 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474-484.
    Overman, J. P. M., H. J. L. Witte, and J. G. Saldarriaga. 1994. Evaluation of regression models for aboveground biomass determination in Amazon rainforest. Journal of Tropical Ecology 10 (02): 207-218.
    Patterson, B. D., D. F. Stotz, S. Solari, W. Fitzpatrick, and V. Pacheco. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography 25: 593–607.
    Phillips, O. L., et al. 2009. Drought sensitivity of the Amazon rainforest. Science 323: 1344-1347.
    Phillips, O. L., P. Hall, A. H. Gentry, S. A. Sawyer, and R. Vasouez. 1994. Dynamics and species richness of tropical rain forests. Proc. Natl. Acad. Sci. USA 91: 2805-2809.
    Pianka, E. R. 1966. Lattitudinal gradients in species diversity: A review of concepts. The American Naturalist 100: 33-46.
    Proctor, J., Y. F. Lee, A. M. Langley, W. R. C. Munro, and F. M. Robertson. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah. I. Environment, forest structure and floristics. Journal of Ecology 76: 320-340.
    Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in Neotropical birds. The American Naturalist 149: 875-902.
    Richards, P.W. 1952. The Tropical Rain Forest. Cambridge University Press, London.
    Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514-527.
    Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.
    Roy, P. S. and S. A. Ravan. 1996. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci 21(4): 535-561.
    Saenger, P. and J. H. Moverley. 1985. Vegetative phenology of mangroves along the Queensland coastline. Proceedings of the Ecological Society of Australia 13: 257-265.
    Smalley, G.W. 1984. Classification and evaluation of forest sites in the Cumberland Mountains. USDA Forest Service, Southern Forest Experiment Station, New Orleans, La., USA. Gen. Tech. Rep. SO-50.
    Stevens, G. C. 1989. The Latitudinal gradient geographical range: how so many species coexist in the tropics. The American Naturalist 133: 240-256.
    Stevens, G. C. 1992. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. The American 140: 893-911.
    Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geogr. Rev 38: 55-94.
    Turner, J. R. G., C. M. Gatehouse, and C. A. Corey. 1987.Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48: 195-205.
    Turton, S. M. and D. T. Siegenthaler. 2004. Immediate impacts of a severe tropical cyclone on the microclimate of a rain-forest canopy in north-east Australia. Journal of Tropical Ecology 20:583-586.
    Vicente-Serrano, S. M., S. Begueria, and J. I. Lopez-Moreno. 2010. A Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index- SPEI. Journal of Climate 23: 1696-1718.
    Waide, R. B., J. K. Zimmerman, and F. N. Scatena. 1998. Controls of Primary Productivity: Lessons from the Luquillo Mountains in Puerto Rico. Ecology 79(1): 31-37.
    Waring, R. H. 1983. Estimates of forest growth and efficiency in relation to canopy leaf area. Advances in Ecological Research 13: 327-354.
    Wasseige, C. D., D. Bastin, and P. Defourny. 2003. Seasonal variation of tropical forest LAI based on field measurements in Central African Republic. Agricultural and Forest Meteorology 119: 181-194.
    Woodward, F. I. 1987. Climate and plant distribution. Cambridge University Press, Cambridge, UK.

    下載圖示
    QR CODE