簡易檢索 / 詳目顯示

研究生: 楊家豪
Chia-Hao Yang
論文名稱: 磁控濺鍍銦錫氧化物透明導電膜之材料分析及其應用於矽晶太陽能電池之研究
Materials analysis of indium-tin-oxide optical-transparent films and their applications of silicon solar cells
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 42
中文關鍵詞: 斜向濺鍍奈米線陣列ITO
論文種類: 學術論文
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用斜向磁控濺鍍系統成長銦錫氧化物透明導電膜於具有二維奈米線陣列結構的太陽能元件上。系統地分析及量測斜向濺鍍ITO之形態分佈、反射率以及電性,進而探討應用於太陽能電池元件後的光學特性與電性分析。二維奈米線陣列的部分,是利用氫氟酸與硝酸銀在適當的溶液調配比例下發生氧化還原反應所蝕刻而成,所形成之奈米線陣列結構擁有極低的反射率,且在大角度入射的情況下依然得以維持約5%的低反射率。斜角濺鍍則是以射頻濺鍍系統將ITO薄膜成長在蝕刻完成的奈米結構上,並以掃瞄式電子顯微鏡觀察元件的形態且透過積分球與分光儀進行元件反射率的量測,最終獲得一反射率5%,開路電壓為0.56V,光電流為1.54 mA/cm2,轉換效率為0.26% 的太陽能光伏元件。

    目 錄 ...................................................Ⅰ 表目錄 ...................................................Ⅲ 圖目錄 ...................................................Ⅳ 致 謝 ...................................................Ⅵ 摘 要 ...................................................Ⅶ 第一章 序論 ..............................................1 1-1 前言 ...............................................1 1-2 研究動機與目的 .....................................2 1-3 文獻回顧 ...........................................3 第二章 實驗原理 ..........................................5 2-1 ITO 透明導電膜之發展................................5 2-2 ITO 透明導電膜的材料性質 ...........................6 2-3 濺鍍原理 ...........................................7 2-4 斜向濺鍍原理 .......................................10 2-5 霍爾效應與四點探針量測 .............................12 2-6 X 光繞射分析原理(X-ray diffraction, XRD) ...........15 2-7 快速熱退火原理(Rapid Thermal Annealing, RTA) .......17 2-8 太陽能電池原理 .....................................18 第三章 實驗步驟與設備 ....................................24 3-1 元件結構流程 .......................................24 3-2 ITO 斜向濺鍍系統 ...................................26 3-3 快速熱退火 .........................................28 3-4 濕蝕刻奈米柱 .......................................29 3-5 反射率量測 .........................................32 3-6 ITO 電性與元件光電流量測 ...........................33 第四章 實驗結果與討論 ....................................35 4-1 ITO 電性分析 .......................................35 4-2 元件光學分析 .......................................37 4-3 元件電性分析 .......................................39 4-4 結論 ...............................................40 參考文獻 .................................................41 表目錄 表1 ITO 基本材料性質 ...................................6 表2 ITO 水平與斜向濺鍍參數 .............................27 表3 ITO 各溫度快速熱退火參數 ...........................29 圖目錄 圖1 斜向濺鍍示意圖......................................12 圖2 霍爾效應示意圖......................................13 圖3 van der Pauw 四點探針架構圖 ........................14 圖4 van der Pauw 四點探針原理示意圖 ....................15 圖5 晶體繞射 X 光之布拉格幾何關係圖 ....................16 圖6 p 型摻雜示意圖 .....................................19 圖7 p-n 接面太陽能電池能帶示意圖 .......................19 圖8 太陽能電池等效電路圖 ...............................20 圖9 (a)照光下的 I-V 圖 (b)輸出功率與電壓曲線圖 .........21 圖10 元件流程示意圖......................................25 圖11 斜角磁控濺鍍腔內示意圖 .............................26 圖12 實際載台配置圖......................................27 圖13 氧化還原反應示意圖 .................................31 圖14 (a).蝕刻深度與時間關係圖 ...........................31 圖14 (b).奈米線 SEM 圖 ..................................32 圖15 (a).鹵素燈光譜 (b).實際光路架構圖 ..................33 圖16 實際太陽能量測架構圖 ...............................34 圖17 (a).水平濺鍍 ITO SEM 圖(b)斜向濺鍍 ITO SEM 圖 ......35 圖18 ITO 電性整理 .......................................36 圖19 ITO 在各退火溫度下的 XRD 圖 ........................36 圖20 各種結構在可見光波段之反射率圖 .....................37 圖21 各種結構於偏振光之反射率分析圖 .....................38 圖22 各種結構於可見光之變角度吸收率分析圖 ...............38 圖23 元件結構與 SEM 圖 ..................................39 圖24 元件之光電流與暗電流整理 ...........................39

    [1] Knorr T.G., and Hoffmann R.W., “Dependence of Geometric Anisotropy in Thin Iron Films,” Physical Review, Vol.113, No.4, pp. 1039-1046, 1959
    [2] Smith D. O., “Anisotropy in Permalloy Films,” J. Appl. Phys., Vol. 30, pp. 264S-265S, 1959.
    [3] C. Ji, E. A. Guliants, W. A. Anderson, “Silicon nanostructures By metal induced growth (MIG) for solar cell emitters,” the 29th IEEE Photovoltaic Specialists
    Conference, pp. 1314-1316, 2002.
    [4] B. M. Kayes, H. A. Atwater, “Comparison of the device physics principles of
    planar and radial p-n junction nanorod solar cells.”Journal of Applied Physics, vol. 97, pp .114602-1 -114602-11, 2005.
    [5] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications”, Small, vol. 1, pp 1062-1067,
    2005.
    [6] B Tian, X Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,”
    Nature, vol. 449, 885-890, 2007.
    [7] T. J. Kemp, B. Tian, D. R. Kim, J. Hu, X. Zheng and C. M. Lieber, “Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices”, NANO LETTERS, vol. 8 ,
    pp. 3456-3460, 2008.
    [8] E. Garnett, P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” NANO LETTERS, vol. 10, 1082–1087, 2010.
    [9] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells, Appl. Phys. Lett. 91 (2007) 233117/1–233117/3.
    [10] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, “Fabricating nanowire-based solar cells on low-cost metal substrates”, SPIE
    Newsroom (2008)
    [11] Th. Stelzner, M. Pietsch, G. Andra¨, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology 19 (2008) 295203/1–295203/4.
    [12] S. Perraud, S. Poncet, S. Noel, M. Levis, P. Faucherand, “Full process for integrating silicon nanowire arrays into solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 1568–1571
    [13] G. Kalita, S. Adhikari, H. R. Aryal, R. Afre,T. Soga, M. Sharon, W. Koichi ,and M. Umeno, “Silicon nanowire array/polymer hybrid solar cell incorporating carbon
    nanotubes”, J. Phys. D: Appl. Phys. 42 (2009) 115104
    [14] Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello,and S. T. Lee, “Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells”, Nano Lett., Vol. 8, No. 12, 2008
    [15] K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, and M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon
    nanowire arrays” ,Appl. Phys. Lett. 101, 023114 (2012)
    [16] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Adv. Mater. 14
    (2002) 1164-1167.
    [17] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater.13 (2003) 127-132.
    [18] K. Q. Peng, and J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution”, Electrochem. Acta 49 (2004)
    2563-2568.
    [19] K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays”, Adv. Mater. 16 (2004) 73-76.
    [20] K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Adv. Funct. Mater. 2008, 18, 3026–3035
    [21] K. Peng, X. Wang, and S.T. Lee, “Silicon nanowire array photoelectrochemical solar cells”, Appl. Phys. Lett. 92, 163103, 2008
    [22] E. C. Garnett ,and P. Yang, “Silicon Nanowire Radial p-n Junction Solar Cells”, J. AM. CHEM. SOC. 2008, 130, 9224–9225
    [23] Allon I. Hochbaum, Daniel Gargas, Yun Jeong Hwang, and P. Yang , “Single Crystalline Mesoporous Silicon Nanowires”, Nano Lett., Vol. 9, No. 10, 2009
    [24] T. QIU, X. L. WU, Y. F. MEI, P. K. CHU, and G. G. SIU, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition
    Method”, Appl. Phys. A 81 (2005) 669-671.

    無法下載圖示 本全文未授權公開
    QR CODE