簡易檢索 / 詳目顯示

研究生: 林育正
Yu-Chen Lin
論文名稱: 適應性區間第二類模糊滑動控制器應用於自走車路徑追蹤
Path Tracking for Mobile Robot Using Adaptive Interval Type-2 Fuzzy Sliding- Mode Dynamic Controller
指導教授: 呂藝光
Leu, Yih-Guang
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 運動控制器移動式自走車之動態模型滑動控制器移動自走車適應性區間第二類模糊滑動模式控制器
英文關鍵詞: kinematic controller, dynamic mode, sliding controller, mobile robots, adaptive interval Type-2 fuzzy sliding mode dynamic controller
論文種類: 學術論文
相關次數: 點閱:106下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文運用一種適應性區間第二類模糊滑動控制器的新方式,主要目的在於設計一可智慧型行走且具有路徑追蹤與避障功能之自走車,本文中,移動式自走車的運動控制器與動態模型可以求出軌跡追蹤,配合李亞普諾夫函數求系統穩定,證明適應法則。將速度與角速度做為模糊滑動模式系統的輸入後,做為軌跡追蹤之依據。
    最後,經由電腦模擬與實驗可知,使用適應性區間第二類模糊滑動模式控制器比適應性第一類模糊滑動模式控制器呈現出較好的軌跡追蹤效果。

    This thesis proposes a novel method using adaptive interval Type-2 fuzzy sliding mode dynamic controller for self-propelled vehicle. Through this method, let the vehicle keep away from obstacles and path tracking. In this thesis, Path tracking is solved by the kinematic controller and dynamic model of nonholonomic constraint mobile robots (Pioneer 3-DX).Stability analysis from Lyapunov function to improve adaptive law. The velocity and the angular velocity are used as the control inputs of fuzzy sliding mode system. Finally, the simulation and the experiment results show that using the adaptive interval Type-2 fuzzy sliding mode dynamic controller exhibits a better performance track following behavior than adaptive fuzzy sliding mode dynamic controller.

    中文摘要 i 英文摘要 ii 誌  謝 iii 目  錄 iv 圖 目 錄 vi 表 目 錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究架構 4 第二章 文獻探討與回顧 5 2.1 自走車之運動控制器 5 2.2 非完整約束之自走車動態模型設計 8 2.3 適應性模糊滑動模式控制器 9 2.4 第一類模糊邏輯系統 14 2.5 區間第二類模糊邏輯系統範例 18 2.5.1 區間第二類模糊邏輯系統簡介 18 2.5.2 區間第二類模糊邏輯系統設計 18 第三章 機器人之軟硬體架構 20 3.1 系統之軟硬體規格 20 3.1.1 自走車硬體架構 20 3.1.2 自走車外觀 21 3.1.3 自走車的通訊方式 22 3.2 超音波感測器系統 22 3.3 自走車移動軌跡紀錄 23 第四章 適應性區間第二類模糊滑動模式控制器設計 25 4.1 控制器簡介 25 4.2 適應性區間第二類模糊滑動模式控制器設計 25 4.2.1 區間第二類模糊邏輯系統設計 25 4.3 適應性區間第二類模糊滑動模式控制器之模擬 29 4.4 模擬結果與討論 39 第五章 實驗與討論 40 5.1 直線軌跡追蹤實驗 40 5.2 拋物線軌跡追蹤實驗 41 5.3 倒車入庫軌跡追蹤實驗 41 5.4 直線避障軌跡追蹤實驗 42 5.5 拋物線避障軌跡追蹤實驗 47 5.6 倒車入庫之多處障礙避障實驗 50 5.7 倒車入庫之連續障礙避障實驗 55 5.8 結論 60 第六章 研究結論與未來展望 61 6.1 結論 61 6.2 未來展望 61 參考文獻 63

    [1] iRobotics corporation,http://www.irobot.com/
    [2] Robotics of the world,http://www.robotworld.org.tw/
    [3] 林宗德(2005):居家清潔機器人之全域覆蓋路徑規劃與實現,國立成功大學碩士論文。
    [4] D.Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 637-644, 2004.
    [5] J. M. Yang, and J. H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots.” IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 578-587, 1999.
    [6] M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, “Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainly and disturbances,” Mechatronics, vol. 17, no. 4, pp.447–469, 1997.
    [7] T. Kukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, pp.609–615, Oct. 2000.
    [8] Slotine JJE, Li W. Applied nonlinear control. Imprint Englewood Cliffs, NJ: Prentice Hall; 1991.
    [9] Jiang ZP, Nijmeijev H. “Tracking control of mobile robots: a case study in backstepping,” Automatica, vol. 33(7), pp. 1393–9, 1997.
    [10] Fierro R, Lewis FL, “Control of a nonholonomic mobile robot: backstepping kinematics into dynamics,” J Robot Syst, vol. 14(3), pp. 149–63, 1997.
    [11] Kukao T, Nakagawa H, Adachi N. “Adaptive tracking control of nonholonomic mobile robot,” IEEE Trans Robot Automat, vol. 16(5), pp. 609–15, 2000.
    [12] Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic Design of Adaptive Controllers for Feedback Linearizable Systems,” IEEE Trans. On Automatic Control, vol. 36, pp. 1241-1253, 1991.
    [13] W. Dong, and W. Huo, “Adaptive Stabilization of Uncertain Dynamic Nonholonomic Systems,” Internal Journal of Control, vol. 72, no. 18, pp. 1689-1700, 1999.
    [14] S. S. Ge, and G. Y. Zhou, “Adaptive Robust Stabilization of Dynamic Nonholonomic Chained Systems,” Journal of Robotic System, vol. 18, no. 3, pp. 119-133, 2001.
    [15] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and vedio compression: An Overview,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 23–50, Nov. 1998.
    [16] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–99, Nov. 1998.
    [17] Chih-Yang Chen, Tzuu-Hseng S. Li, Ying-Chieh Yeh, Cha-Cheng Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,”Mechatronics, no. 19, pp. 156–166, 2009.
    [18] 朱健銘,姚立德,“基於寬幅調變之適應性模糊滑動模式控制器應用於輪型機器人之研究” 中華民國第十九屆模糊理論及其應用研討會,國立虎尾科技大學,2011,雲林。
    [19] 王文俊,“認識 Fuzzy-第二版“,全華科技圖書出版社,Oct. 1997。
    [20] 汪惠健,“模糊理論與應用“,台灣培生教育出版股份有限公司,Nov. 2006。
    [21] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.
    [22] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
    [23] J. M. Mendel, R. I. B. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 808–821, Dec. 2006.
    [24] Karnik N.N, Mendel J.M., Liang Q. “Type-2 Fuzzy Logic Systems,” Trans. on Fuzzy Syst., vol. 7, no. 6 Dec. 1999.
    [25] 潘冠佑,“模糊量測理論應用於自走車行走控制“,國立臺灣師範大學應用電子科技研究所碩士論文,民國100年。
    [26] Bonarini, “Anytime learning and adaptation of hierarchical fuzzy logic behaviors,” Adapt. Behavior J., vol. 5, no. 3–4, pp. 281–315, 1997
    [27] V. Matellan, C. Fernandez, and J. Molina, “Genetic learning for fuzzy reactive controllers,” J. Robot. Auton. Syst., vol. 25, pp. 33–41, 1998.
    [28] B.C. Min, M.S. Lee, and D. Kim, “Fuzzy logic path planner and motion controller by evolutionary programming for mobile robots,” International Journal of Fuzzy Systems, vol.11, no.3, pp.154-163, 2009.
    [29] C.C. Wong, C.T. Cheng, K.H. Huang, and Y.T. Yang, “Fuzzy control of humanoid robot for obstacle avoidance,” International Journal of Fuzzy Systems vol.10, no.1, pp.261-270, 2008.
    [30] Safiotti, A, “Fuzzy logic in autonomous robotics: Behavior coordination,” in Proc.6th IEEE Int. Conf. Fuzzy Systems, Barcelona, Spain, , pp.573–578, 1997.
    [31] E. Tunstel, T. Lippincott, and M. Jamshidi, “Behavior hierarchy for autonomous mobile robots: Fuzzy behavior modulation and evolution,” Int.J. Intell. Automat. Soft Comput., vol. 3, no. 1, pp. 37–49, 1997.
    [32] 高嘉良(2010):移動機器人之階層模糊控制,國立台灣師範大學工業教育研究所碩士論文。
    [33] 李政霖(2011): 移動機器人之二級式區間第二類模糊控制,國立台灣師範大學應用電子科技研究所碩士論文。
    [34] Shaorong Chang and Lawrence Carin, “A modified SPIHD algorithm for image coding with a joint MSE and classification distortion measure,” IEEE transactions on image procession, vol. 15, no. 3, pp. 713–725, 2006.

    下載圖示
    QR CODE