簡易檢索 / 詳目顯示

研究生: 李慶孝
Ching-Hsiao Lee
論文名稱: 以肺癌細胞株與動物模式探討新穎的吲哚結構合成化合物1,1,3-tri(3-indolyl)cyclohexane抑制腫瘤細胞生長機制
A novel two-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models
指導教授: 王憶卿
Wang, Yi-Ching
李桂楨
Lee, Guey-Jen
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 135
中文關鍵詞: 吲哚結構化合物肺癌微管聚合作用抗微管作用粒線體訊息傳遞相關細胞凋亡活性氧分子c-Jun N端蛋白質激酶
英文關鍵詞: indole compound, lung cancer, tubule polymerization, antimicrotubule, mitochondria-mediated apoptosis, reactive oxygen species, c-Jun N-terminal kinase
論文種類: 學術論文
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:肺癌在世界各地無論男性或女性都是發病率、死亡率名列前茅的惡性腫瘤。因此,發現與合成新穎的肺癌治療抗癌藥物是刻不容緩的工作。材料與方法:本研究發展了一種新穎的吲哚結構合成化合物1,1,3-tri(3-indolyl)cyclohexane (3-indole),設計使用二步法合成,該技術方法縮短製備過程,產品質量和產量也獲得提高,並藉由人類肺癌細胞株 (A549, H1299, H1435, CL1-1, and H1437) 來探討新穎抗癌藥物對於肺癌細胞的毒殺作用及其機制,同時進行前臨床動物實驗測試。結果:新穎的抗癌藥物3-indole經由不同濃度處理,可以誘導人類肺癌細胞株 (A549, H1299, H1435, CL1-1, and H1437) 進行細胞週期休止 (cell cycle arrest) 及細胞凋亡 (apoptosis)。細胞週期研究初步實驗結果顯示調控細胞週期休止的蛋白p53與p21表現增加,顯示p53/p21相關訊息傳遞路徑重要性。目前已知有兩個機轉可以調控細胞凋亡現象,第一個作用機轉是經由caspases (cysteine-dependent aspartate-specific proteases) 相關性機轉活化而引起細胞凋亡,目前已被認定有粒線體參與訊息傳遞的內在路徑與細胞外死亡訊息接受器作用的外在路徑;第二個機轉是經由caspases非相關性機轉。西方墨點法實驗結果顯示,調控細胞凋亡進行的促進凋亡蛋白Bax、Bad表現增加,抗凋亡蛋白Bcl-2表現下降,而粒線體細胞色素C釋放至細胞質情形也有增加,另外一方面,透過caspases活性分析實驗結果顯示,3-indole主要是藉由caspases-9、caspases-3參與粒線體訊息傳遞的內在路徑以誘發細胞凋亡發生。此外,3-indole誘導A549人類肺癌細胞株粒線體膜電位下降、活性氧分子 (reactive oxygen species, ROSs) 產量增加,與細胞生長調節相關MAPK (Mitogen-activated protein kinase) 家族分子c-Jun N端蛋白質激酶 (JNK) 表現增加,同時顯示有DNA損傷情形。進一步活性氧分子抑制劑實驗結果顯示,JNK表現與DNA損傷可部分減少。3-indole誘導細胞凋亡情形受到活性氧分子抑制劑或JNK訊息抑制劑阻斷,顯示活性氧分子與JNK壓力相關訊息傳遞路徑重要性。此外,初步實驗結果,其他生長調節相關訊息傳遞蛋白 (如Akt與p38/COX-2) 表現也受到3-indole抑制,顯示PI3K/Akt與p38/COX-2訊息傳遞路徑重要性。同時前臨床動物實驗測試結果顯示3-indole抑制A549及H1435肺癌細胞株生長。結論:3-indole在細胞模式與動物模式呈現具有抑制肺癌細胞株生長的作用,其誘導細胞死亡是透過ROS與JNK路徑之粒線體訊息傳遞的內在細胞凋亡,同時可誘導細胞週期休止以及抑制肺癌細胞株Akt與p38/COX-2的表現,顯示使用二步法合成,具有高質量和產量的3-indole具有發展作為新穎的抗癌症用藥的價值。

    BACKGROUND. Lung cancer is the most common malignancies in both men and women worldwide. Thus, the development of more effective anti-cancer drugs for lung cancer is urgently needed
    METHODS. This study generated a 2-step novel synthetic compound, referred to as 1,1,3-tri(3-indolyl)cyclohexane (3-indole), in high purity and yield. 3-indole was tested for its biological activity in A549, H1299, H1435, CL1-1, and H1437 lung cancer cells. Animal studies were also performed.
    RESULTS: The data indicated that 3-indole induced cell cycle arrest and apoptosis in various lung cancer cells. Increased expression of p53 and p21 protein suggested the importance of p53/p21 pathway in 3-indole-induced cell cycle arrest. Increased cytochrome c release from mitochondria to cytosol, decreased expression of anti-apoptotic Bcl-2, and increased expression of pro-apoptotic Bax and Bad were observed. In addition, 3-indole stimulated caspases-3, -9 and to a lesser extent caspase-8 activities in cancer cells, suggesting that the intrinsic mitochondria pathway was the potential mechanism involved in 3-indole-induced apoptosis. 3-indole-induced a concentration-dependent mitochondrial membrane potential dissipation, and increase in reactive oxygen species (ROSs) production. Activating c-Jun N-terminal kinase (JNK) and triggering DNA damage were also apparent. Note that 3-indole-induced JNK activation and DNA damage can be partially suppressed by ROS inhibitor. Apoptosis induced by 3-indole could be abrogated by ROS or JNK inhibitors, suggesting the importance of ROS and JNK stress-related pathways in 3-indole-induced apoptosis. Preliminary data of decrease expression of Akt, p38, and COX-2 proteins suggested the importance of PI3K/Akt and p38/COX-2 pathways in 3-indole induced cell apoptosis. Moreover, 3-indole showed in vivo anti-tumor activities against human xenografts in murine models.
    CONCLUSIONS. The result from the present study suggest that 3-indole inhibited the growth of various human lung cancer cells in cell and animal models and induced intrinsic apoptosis by ROS production and activation of the JNK signaling pathways. Together, these data confirmed that the 2-step synthetic 3-indole compound of high purity and yield is a potential candidate to be tested as a lead pharmaceutical compound for cancer treatment.

    Chinese Abstract ---------------------------------------------------------------- 1 English Abstract ----------------------------------------------------------------- 3 Introduction ---------------------------------------------------------------------- 5 I. Outline of lung cancer -------------------------------------------------------- 5 II. Overview of cell cycle ------------------------------------------------------- 6 1. Cell cycle ----------------------------------------------------------------------- 6 2. Cell cycle checkpoint --------------------------------------------------------- 7 3. Cyclin-dependent kinases inhibitors (CKIs) ------------------------------- 8 III. Overview of apoptosis ------------------------------------------------------ 9 1. Apoptosis ---------------------------------------------------------------------- 9 2. Pathways of Apoptosis ------------------------------------------------------ 10 3. Caspases (cysteine-dependent aspartate-specific proteases) ----------- 11 4. Bcl-2 family ------------------------------------------------------------------ 12 Ⅳ. Reactive oxygen species (ROS) ------------------------------------------ 13 V. The mitogen-activated protein kinase (MAPK) family ----------------- 14 Ⅵ. Compounds with an indole structure ------------------------------------ 16 1. Microtubule structure and function --------------------------------------- 16 2. Anti-microtubule drugs ----------------------------------------------------- 17 Ⅶ. 1,1,3-tri(3-indolyl)cyclohexane (3-indole) ------------------------------ 18 Materials and Methods ------------------------------------------------------- 20 Ⅰ. 1,1,3-tri(3-indolyl)cyclohexane (3-indole) ----------------------------- 20 Ⅱ. Cell Culture ----------------------------------------------------------------- 20 Ⅲ. Cell Proliferation Assay --------------------------------------------------- 20 Ⅳ. Analysis of Cell Cycle Distribution -------------------------------------- 21 V. Determination of the Apoptotic DNA Ladder --------------------------- 21 Ⅵ. Evaluation of the Mitochondrial Transmembrane Potential ---------- 22 Ⅶ. Western Blot Analysis ----------------------------------------------------- 22 Ⅷ. Determination of Caspase Activity -------------------------------------- 23 IX. Immunocytochemistry ----------------------------------------------------- 24 X. Determination of Intracellular Reactive Oxygen Species ------------- 24 XI. Pulsed-Field Gel Electrophoresis ---------------------------------------- 25 XII. cDNA Microarray Analysis ---------------------------------------------- 25 XIII. Subcutaneous Implantation of Cancer Cells in Animals and Monitoring of in Vivo Anti-tumoral Activity afters Drug Treatment ----------------------------------------------------------------- 26 Results --------------------------------------------------------------------------- 28 I. 3-indole Apparently Inhibited Growth at Low Concentration and Promoted Cell Death at High Concentration in Various Human Lung Cancer Cells ------------------------------------------------- 28 II. 3-indole Induced Cell Cycle Arrest and Apoptosis in Various Human NSCLC Cells -------------------------------------------- 29 III. Activation of the p53/p21 Pathway Is Required for the Induction of Cell Cycle Arrest in 3-indole ------------------------------------------- 30 IV.3-indole Induced Apoptosis Through the Activation of the Intrinsic Mitochondrial Pathway ----------------------------------------- 30 V.3-indole Induced Cell Cycle Arrest and Apoptosis by Reactive Oxygen Species Production and DNA Double-Strand Breaks in A549 or H1299 Cells -------------------------------------------------------- 31 VI.cDNA Microarray Analysis to Search For Differential Expressed Genes After 3-indole Treatment ------------------------------------------ 33 VII.Activation of the JNK Signaling Pathways Is Required for the Induction of Apoptosis in 3-indole Treated A549 Cells --------------- 33 VIII.3-indole Effectively Inhibited the Growth of Human A549 and H1435 Xenografts ----------------------------------------------------- 35 Discussion ----------------------------------------------------------------------- 37 Figures --------------------------------------------------------------------------- 46 References ----------------------------------------------------------------------- 75 Appendix------------------------------------------------------------------------ 87

    Acharya MR, Sparreboom A, Venitz J and Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol pharmacol. 68:917-932.
    Agarwal ML, Agarwal A, Taylor WR and Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A. 92:8493-8497.
    Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, Venkataraman S, Mackey MA, Flanagan SW, Oberley LW and Spitz DR (2005) Mitochondrial O2- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem. 280:4254-4263.
    Anders MW (1980) Metabolism of drugs by the kidney. Kidney Int. 18:636-647.
    Avdi NJ, Malcolm KC, Nick JA and Worthen GS (2002) A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol Chem. 277:40687-40696.
    Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y and Seger R (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene. 20:147-155.
    Blajeski AL, Phan VA, Kottke TJ and Kaufmann SH (2002) G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest. 110:91-99.
    Brancale A and Silvestri R (2007) Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med Res Rev. 27:209-238.
    Brandi G, Paiardini M, Cervasi B, Fiorucci C, Filippone P, De Marco C, Zaffaroni N and Magnani M (2003) A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res. 63:4028-4036.
    Brew CT, Aronchik I, Hsu JC, Sheen JH, Dickson RB, Bjeldanes LF and Firestone GL (2006) Indole-3-carbinol activates the ATM signaling pathway independent of DNA damage to stabilize p53 and induce G1 arrest of human mammary epithelial cells. Int J Cancer. 118:857-868.
    Broker LE, Kruyt FA and Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res. 11:3155-3162.
    Chiarugi P and Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci. 28:509-514.
    Chinni SR and Sarkar FH (2002) Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin Cancer Res. 8:1228-1236.
    Chrestensen CA, Starke DW and Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem. 275:26556-26565.
    Danesi R, de Braud F, Fogli S, de Pas TM, Di Paolo A, Curigliano G and Del Tacca M (2003) Pharmacogenetics of anticancer drug sensitivity in non-small cell lung cancer. Pharmacol Rev. 55:57-103.
    Danial NN and Korsmeyer SJ (2004) Cell death: critical control points. Cell. 116:205-219.
    Dash BC and El-Deiry WS (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 25:3364-3387.
    Dashwood RH, Fong AT, Arbogast DN, Bjeldanes LF, Hendricks JD and Bailey GS (1994) Anticarcinogenic activity of indole-3-carbinol acid products: ultrasensitive bioassay by trout embryo microinjection. Cancer Res. 54:3617-3619.
    Dean JL, Sarsfield SJ, Tsounakou E and Saklatvala J (2003) p38 Mitogen-activated protein kinase stabilizes mRNAs that contain cyclooxygenase-2 and tumor necrosis factor AU-rich elements by inhibiting deadenylation. J Biol Chem. 278:39470-39476.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R and Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 278:687-689.
    Desagher S and Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10:369-377.
    Di Leonardo A, Khan SH, Linke SP, Greco V, Seidita G and Wahl GM (1997) DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57:1013-1019.
    Donovan N, Becker EB, Konishi Y and Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 277:40944-40949.
    Dougherty CJ, Kubasiak LA, Frazier DP, Li H, Xiong WC, Bishopric NH and Webster KA (2004) Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J. 18:1060-1070.
    Du C, Fang M, Li Y, Li L and Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 102:33-42.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol. 35:495-516.
    Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA and Chambers TC (2000) Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem. 275:29980-29985.
    Fernando RI and Wimalasena J (2004) Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell. 15:3266-3284.
    Filomeni G, Aquilano K, Rotilio G and Ciriolo MR (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res. 63:5940-5949.
    Frey RS and Singletary KW (2003) Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J Nutr. 133:226-231.
    Friend S (1994) p53: a glimpse at the puppet behind the shadow play. Science. 265:334-335.
    Ghobrial IM, Witzig TE and Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA: Cancer J Clin. 55:178-194.
    Giannakakou P, Robey R, Fojo T and Blagosklonny MV (2001) Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene. 20:3806-3813.
    Giannakakou P, Sackett D and Fojo T (2000) Tubulin/microtubules: still a promising target for new chemotherapeutic agents. J Natl Cancer Inst. 92:182-183.
    Gong Y, Sohn H, Xue L, Firestone GL and Bjeldanes LF (2006) 3,3'-Diindolylmethane is a novel mitochondrial H+-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res. 66:4880-4887.
    Goodsell DS (2000) The molecular perspective: caspases. Oncologist. 5:435-436.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med. 53:615-627.
    Greenblatt MS, Bennett WP, Hollstein M and Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855-4878.
    Grubbs CJ, Lubet RA, Koki AT, Leahy KM, Masferrer JL, Steele VE, Kelloff GJ, Hill DL and Seibert K (2000) Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats. Cancer Res. 60:5599-5602.
    Gupta S, Yel L, Kim D, Kim C, Chiplunkar S and Gollapudi S (2003) Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bcl-2. Mol Cancer Ther. 2:711-719.
    Harris RE, Alshafie GA, Abou-Issa H and Seibert K (2000) Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 60:2101-2103.
    Hayflick L (1997) Mortality and immortality at the cellular level. A review. Biochemistry. 62:1180-1190.
    Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M and Kaufmann WK (2002) An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol. 22:8552-8561.
    Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J and Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem. 278:52231-52239.
    Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M and Fabregat I (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J. 15:741-751.
    Hong C, Kim HA, Firestone GL and Bjeldanes LF (2002) 3,3'-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis. 23:1297-1305.
    Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T and Houghton PJ (2001) p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res. 61:3373-3381.
    Iseri S, Ercan F, Gedik N, Yuksel M and Alican I (2007) Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology. 230:256-264.
    Israels ED and Israels LG (2000) The cell cycle. Oncologist. 5:510-513.
    Jemal A, Siegel R, Ward E, Murray T, Xu J and Thun MJ (2007) Cancer statistics, 2007. CA: Cancer J Clin. 57:43-66.
    Johnson GL and Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298:1911-1912.
    Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents. 2:1-17.
    Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H and Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56:816-825.
    Jordan MA and Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 10:123-130.
    Jordan MA and Wilson L (2004) Microtubules as a target for anticancer drugs. Nature Rev Cancer. 4:253-265.
    Juang SH, Lung CC, Hsu PC, Hsu KS, Li YC, Hong PC, Shiah HS, Kuo CC, Huang CW, Wang YC, Huang L, Chen TS, Chen SF, Fu KC, Hsu CL, Lin MJ, Chang CJ, Ashendel CL, Chan TC, Chou KM and Chang JY (2007) D-501036, a novel selenophene-based triheterocycle derivative, exhibits potent in vitro and in vivo antitumoral activity which involves DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. Mol Cancer Ther. 6:193-202.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H and Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 120:649-661.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304-6311.
    Ko S, Lin C, Tu Z, Wang YF, Wang CC and Yao CF (2006) CAN and iodine-catalyzed reaction of indole or 1-methylindole with α,β-unsaturated ketone or aldehyde. Tetrahedron Letters. 47:487–492.
    Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM, Birnbaum MJ, Lindsten T and Thompson CB (2004) The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science. 306:695-698.
    Koren R, Hadari-Naor I, Zuck E, Rotem C, Liberman UA and Ravid A (2001) Vitamin D is a prooxidant in breast cancer cells. Cancer Res. 61:1439-1444.
    Koukourakis MI, Giatromanolaki A, O'Byrne KJ, Comley M, Whitehouse RM, Talbot DC, Gatter KC and Harris AL (1997) Platelet-derived endothelial cell growth factor expression correlates with tumour angiogenesis and prognosis in non-small-cell lung cancer. Br J Cancer. 75:477-481.
    Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, Chang YL, Chen LT, Chen CT and Chang JY (2004) BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 64:4621-4628.
    Kyriakis JM and Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81:807-869.
    Lasa M, Brook M, Saklatvala J and Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol. 21:771-780.
    Lavelle D, DeSimone J, Hankewych M, Kousnetzova T and Chen YH (2003) Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk Res. 27:999-1007.
    Lavrik IN, Golks A and Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest. 115:2665-2672.
    Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med. 349:474-485.
    Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D and Davis RJ (2002) The Bax subfamily of Bcl-2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol Cell Biol. 22:4929-4942.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479-489.
    Li Q and Sham HL (2002) Discovery and development of antimitotic agents that inhibit tubulin polymerization for treatment of cancer. Exp Opin Ther Pat. 12:1663-1702.
    Liebermann DA, Hoffman B and Steinman RA (1995) Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene. 11:199-210.
    Liu Q, Hilsenbeck S and Gazitt Y (2003) Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood. 101:4078-4087.
    Liu X, Kim CN, Yang J, Jemmerson R and Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86:147-157.
    Lundberg AS and Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer. 35:1886-1894.

    Minucci S and Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 6:38-51.
    Molina JR, Adjei AA and Jett JR (2006) Advances in chemotherapy of non-small cell lung cancer. Chest. 130:1211-1219.
    Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M and Lock RB (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. 7:102-111.
    Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell. 116:221-234.
    Ohta Y, Shridhar V, Bright RK, Kalemkerian GP, Du W, Carbone M, Watanabe Y and Pass HI (1999) VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br J Cancer. 81:54-61.
    Olson JM and Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med. 10:125-129.
    Pan J, She M, Xu ZX, Sun L and Yeung SC (2005) Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Res. 65:3671-3681.
    Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Passaniti T and Kwon TK (2001) Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun. 286:726-734.
    Park MS and Koff A (2001) Overview of the cell cycle. Curr Protoc Cell Biol. Chapter 8:Unit 8 1.
    Paules RS, Levedakou EN, Wilson SJ, Innes CL, Rhodes N, Tlsty TD, Galloway DA, Donehower LA, Tainsky MA and Kaufmann WK (1995) Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res. 55:1763-1773.
    Pellegata NS, Antoniono RJ, Redpath JL and Stanbridge EJ (1996) DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci U S A. 93:15209-15214.
    Pellegrini F and Budman DR (2005) Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest. 23:264-273.

    Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, Baker S, Jr., Olak J, Stover D, Strawn JR, Turrisi AT and Somerfield MR (2004) American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 22:330-353.
    Porter AG (1999) Protein translocation in apoptosis. Trends cell Biol. 9:394-401.
    Raha S and Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 25:502-508.
    Rahman KW, Li Y, Wang Z, Sarkar SH and Sarkar FH (2006) Gene expression profiling revealed survivin as a target of 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res. 66:4952-4960.
    Ray RM, Bhattacharya S and Johnson LR (2005) Protein phosphatase 2A regulates apoptosis in intestinal epithelial cells. J Biol Chem. 280:31091-31100.
    Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 3:1129-1134.
    Rhind N and Russell P (2000) Checkpoints: it takes more than time to heal some wounds. Curr Biol. 10:R908-911.
    Roux PP and Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 68:320-344.
    Salmon TB, Evert BA, Song B and Doetsch PW (2004) Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32:3712-3723.
    Sheahan S, Bellamy CO, Dunbar DR, Harrison DJ and Prost S (2007) Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFbeta cell cycle arrest. BMC Cancer. 7:215.
    Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60:3689-3695.
    Sherr CJ and Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13:1501-1512.
    Sorger PK, Dobles M, Tournebize R and Hyman AA (1997) Coupling cell division and cell death to microtubule dynamics. Curr Opin Cell Biol. 9:807-814.

    Su JL, Lin MT, Hong CC, Chang CC, Shiah SG, Wu CW, Chen ST, Chau YP and Kuo ML (2005) Resveratrol induces FasL-related apoptosis through Cdc42 activation of ASK1/JNK-dependent signaling pathway in human leukemia HL-60 cells. Carcinogenesis. 26:1-10.
    Subbaramaiah K and Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 24:96-102.
    Sugden PH and Clerk A (1998) "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 83:345-352.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441-446.
    Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 10:415-427.
    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 288:870-874.
    Trielli MO, Andreassen PR, Lacroix FB and Margolis RL (1996) Differential Taxol-dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific-related mortality of transformed cells. J Cell Biol. 135:689-700.
    Tyson JJ and Novak B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol. 210:249-263.
    Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T and Wimalasena J (1998a) Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem. 273:4928-4936.
    Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, Wang Y, Huang S and Han J (2000) Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol. 20:4543-4552.
    Wang Y, Huang S, Sah VP, Ross J, Jr., Brown JH, Han J and Chien KR (1998b) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 273:2161-2168.
    Weidner N and Folkman J (1996) Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol. :167-190.
    Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH and Mariadason JM (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 281:13548-13558.
    Woods CM, Zhu J, McQueney PA, Bollag D and Lazarides E (1995) Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med. 1:506-526.
    Wyllie AH and Golstein P (2001) More than one way to go. Proc Natl Acad Sci U S A. 98:11-13.
    Yee KW, Hagey A, Verstovsek S, Cortes J, Garcia-Manero G, O'Brien SM, Faderl S, Thomas D, Wierda W, Kornblau S, Ferrajoli A, Albitar M, McKeegan E, Grimm DR, Mueller T, Holley-Shanks RR, Sahelijo L, Gordon GB, Kantarjian HM and Giles FJ (2005) Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 11:6615-6624.
    Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J and Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 13:329-340.
    Zapata JM, Pawlowski K, Haas E, Ware CF, Godzik A and Reed JC (2001) A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem. 276:24242-24252.
    Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D, Frolova O, Hail N, Jr., Chen W, Kornblau SM, Huang P, Lu Y, Mills GB, Andreeff M and Konopleva M (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res. 66:3737-3746.
    Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V and Shi X (2003) Role of reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest. Free Radic Biol Med. 34:1333-1342.
    Zhou JY, Liu Y and Wu GS (2006) The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res. 66:4888-4894.

    QR CODE