簡易檢索 / 詳目顯示

研究生: 林佑澤
Lin, Yow-Dzer
論文名稱: 氧釩錯合物催化共軛加成及硫縮醛化反應之研究
指導教授: 陳建添
Chen, Chien-Tien
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 270
中文關鍵詞: 氧釩錯合物催化硫縮醛化反應共軛加成反應
英文關鍵詞: vanadyl triflate, catalysis, thioacetalization, conjugate addition
論文種類: 學術論文
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章部份,我們報導了一種新的三氟甲磺酸氧釩VO(OTf)2催化系統,當應用於醛和酮類化合物的硫縮醛化反應 (thioacetalization),以及縮醛類化合物 (acetals) 的交換硫縮醛化反應 (transthioacetalization) 時,對於羰官能基有很高的化學選擇性,例如醛基相對於酮基、烯酮基相對於酮基等;而且與羥基 (hydroxy)、烷氧基 (alkoxy)、醯氧基 (acyloxy)、鹵化物 (halide)、胺基 (amino)、硝基 (nitro)、酸 (acid) 和酯 (ester) 等官能基,亦俱備了多元化的相容性。除了反應可在室溫下溫和地進行外,VO(OTf)2催化劑用量大都小於10 mol%,而且可以直接使用硫醇 (thiols) 或二硫醇 (dithiols) 當作親核劑反應物,這些結果均優於一般常用的布忍斯特酸 (Brønsted acids) 或路易斯酸 (Lewis acids) 催化劑,這也揭示了對於有機合成化學將有很大的應用性與實用性。此外,苯甲醛的二硫縮醛化合物的去保護基研究,經運用我們的Ac2O/VO(OTf)2催化系統在無溶劑條件下,可直接轉換為苯甲醛的二乙酸酯 (diacetate,acylal) 化合物,亦是另一項有趣的結果。
    第二章部份,我們首次報導了使用三氟甲磺酸氧釩VO(OTf)2催化劑,來促進(hetero)Michael addition反應,以形成C-X和C-C鍵的成功範例。反應性較大的含硫親核劑,進行thia-Michael addition時可獲得很高的產率,而且與羥基 (hydroxy)、烷氧基 (alkoxy)、鹵化物 (halide)、嘧啶基 (pyrimidyl) 等官能基均有很好的相容性。反應性較弱的含氧、含氮親核劑,例如醇 (alcohols)、醯胺 (amides) 和磺酸鹽 (sulfonates) 等,亦可直接進行oxa-及aza-Michael addition反應。此外,氫膦化合物 (hydrogen phosphines) 和氫亞磷酸鹽 (hydrogen phosphites) 等含磷親核劑,在VO(OTf)2催化下亦能成為很有用的phospha-Michael addition的Michael donor;其中全新發展出來的同步、自動 (in situ) 生成的乙醯亞磷酸鹽 (acetylphosphite),經過VO(OTf)2催化劑活化後,可與α,β-烯酮化合物 (α,β-enones) 進行共軛加成反應。最後,在相同催化條件下,各種富含電子的 (雜環)芳族烴和α,β-不飽和羰基化合物,亦均能有效地進行Friedel- Crafts-type conjugate addition以形成碳-碳鍵,而且其反應步驟非常簡單、易操作。

    In the first part, a series of thiols and dithiols has been examined as protic nucleophiles for double nucleophilic condensations with aldehydes, ketones, and acetals catalyzed by amphoteric, water-tolerant vanadyl triflate under mild and neutral conditions. A preliminary study for catalytical acylative dethioacetalization in neat acetic anhydride has also been examined. The newly developed C-S bond formation and scission protocols were carried out smoothly in good to high yields in a highly chemoselective manner.
    In the second part, a series of thiols, alcohols, carbamates, amides, N-tosyl amides, hydrogen phosphines/phosphites, and (hetero)arenes has been examined as nucleophiles for (hetero)Michael-type additions to enones and enamides catalyzed by amphoteric vanadyl triflate under mild and neutral conditions. The newly developed C-S, C-O, C-N, C-P, and C-C bond formation protocols were carried out smoothly in good to high yields without intervention of any 1,2-additions.

    目 錄 誌 謝 ............................................... iii 中文摘要 ............................................... v Abstract ............................................... vii 圖表目錄 ............................................. viii 第一章、氧釩錯合物催化硫縮醛化、交換硫縮醛化及去硫縮醛化反應之研究 第一節、緒 論 ...................................... 2 第二節、結果與討論 .................................... 9 第三節、結 論 ...................................... 26 第四節、參考文獻 ...................................... 27 第二章、氧釩錯合物催化含硫、氧、氮、磷及碳親核劑之共軛加成反應研究 第一節、緒 論 ...................................... 32 第二節、結果與討論 .................................... 39 第三節、結 論 ...................................... 58 第四節、參考文獻 ...................................... 60 第三章、實驗步驟及光譜數據 第一節、分析儀器與實驗溶劑概述 ........................ 68 第二節、實驗步驟 ...................................... 70 第三節、光譜數據 ...................................... 75 第四節、參考文獻 ......................................102 附錄一、實驗室合照 ....................................105 附錄二、第一章之1H、13C核磁共振光譜圖 ...,,,,,.......111 附錄三、第二章之1H、13C、31P核磁共振光譜圖 ..........193

    (1) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; 3rd ed.; John Wiley & Sons: New York, 1999.
    (2) For reviews, see: (a) Seebach, D. Angew. Chem. Int. Ed. 1969, 8, 639. (b) Grobel, B.-T., Seebach, D. Synthesis 1977, 357. (c) Seebach, D. Angew. Chem. Int. Ed. 1979, 18, 239. (d) Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643.
    (3) Hauptmann, H.; Walter, W. F. Chem. Rev. 1962, 62, 347.
    (4) Luh, T.-Y.; Lee, C.-F. Eur. J. Org. Chem. 2005, 3875, and references cited therein.
    (5) Chapleur, Y. Ed. Carbohydrate Mimics: Concepts and Methods; Wiley-VCH: Weinheim, Germany, 1998, chapter 6.
    (6) Breit, B. Angew. Chem. Int. Ed. 1998, 37, 453, and references cited therein.
    (7) For recent reviews, see: (a) Smith, A. B., III; Condon, S. M.; Mccauley, J. A. Acc. Chem. Res. 1998, 31, 35. (b) Yus, M.; Najera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147. (c) Smith, A. B., III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365.
    (8) For recent examples, see: (a) Kamble, V. T.; Bandgar, B. P.; Muley, D. B.; Joshi, N. S. J. Mol. Catal. A: Chem. 2007, 268, 70. (b) Shinde, P. D.; Borate, H. B.; Wakharkar, R. D. ARKIVOC 2004, xiv, 110. (c) Firouzabadi, H.; Eslami, S.; Karimi, B. Bull. Chem. Soc. Jpn. 2001, 74, 2401. (d) Jnaneshwara, G. K.; Barhate, N. B.; Sudalai, S.; Deshpande, V. H.; Wakharkar, R. D; Gajare, A. S.; Shingare, M. S.; Sukumar, R. J. Chem. Soc., Perkin Trans. 1 1998, 1, 965. (e) Diez, E.; Lopez, A. M.; Pareja, C.; Martin, E.; Fernandez, R.; Lassaletta, M. J. Tetrahedron Lett. 1998, 39, 7955.
    (9) (a) Konosu, T.; Oida, S. Chem. Pharm. Bull. 1991, 39, 2212. (b) Nicolaou, K. C.; Veale, C. A.; Hwang, C.-K.; Hutchinson, J.; Prasad, C. V. C.; Ogilvie, W. W. Angew. Chem. Int. Ed. 1991, 30, 299.
    (10) (a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. (b) Ho, T.-L. Chem. Rev. 1975, 75, 1. (c) Hegedus, L. L.; McCabe, R. W. Catalyst Poisoning; Marcel Dekker: New York, 1984. (d) Dubois, M. R. Chem. Rev. 1989, 89, 1. (e) Marécot, P.; Paraiso, E.; Dumas, J. M.; Barbier, J. Appl. Cat. A: General 1992, 80, 79.
    (11) (a) Ong, B. S. Tetrahedron Lett. 1980, 21, 4225. (b) Firouzabadi, H.; Iranpoor, N.; Kohmareh, G. Synth. Commun. 2003, 33, 167.
    (12) (a) Alam, M. M.; Varala, R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115. (b) Komatsu, N.; Uda, M.; Suzuki, H. Synlett 1995, 984. (c) Srivastava, N.; Dasgupta, S.; Banik, B. K. Tetrahedron Lett. 2003, 44, 1191.
    (13) (a) Anand, R. V.; Saravanan, P.; Singh, V. K. Synlett 1999, 415. (b) Besra, R. C.; Rudrawar, S.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 6213.
    (14) (a) Bandgar, B. P.; Kamble, V. T.; Kulkarni, A. Aust. J. Chem. 2005, 58, 607. (b) Adibi, H.; Jafari, H. J. Fluorine Chem. 2007, 128, 679.
    (15) (a) Ceschi, M. A.; Felix, L. de A.; Peppe, C. Tetrahedron Lett. 2000, 41, 9695. (b) Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron 2002, 58, 7897. (c) Ranu, B. C.; Das, A.; Samanta, S. Synlett 2002, 727.
    (16) (a) Rana, K. K.; Guin, C.; Jana, S.; Roy, S. C. Tetrahedron Lett. 2003, 44, 8597. (b) Goswami, S.; Maity, A. C. Tetrahedron Lett. 2008, 49, 3092.
    (17) Khan, A. T.; Mondal, E.; Sahu, P. R.; Islam, S. Tetrahedron Lett. 2003, 44, 919.
    (18) De, S. K. Adv. Synth. Catal. 2005, 347, 673.
    (19) (a) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2002, 43, 1347. (b) Karimi, B.; Ma’mani, L. Synthesis 2003, 2503.
    (20) Kumar, V.; Dev, S. Tetrahedron Lett. 1983, 24, 1289.
    (21) (a) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99, 5009. (b) Lipshutz, B. H.; Lee, C.-T.; Servesko, J. M. Org. Lett. 2007, 9, 4713.
    (22) (a) Lin, Y.-D.; Kao, J.-Q.; Chen, C.-T. Org. Lett. 2007, 9, 5195. (b) Weng, S.-S.; Lin, Y.-D.; Chen, C.-T. Org. Lett. 2006, 8, 5633. (c) Chen, C.-T.; Weng, S.-S.; Kao, J.-Q.; Lin, C.-C.; Jan, M.-D. Org. Lett. 2005, 7, 3343. (d) Chen, C.-T.; Kuo, J.-H.; Ku, C.-H.; Weng, S.-S; Liu, C.-Y. J. Org. Chem. 2005, 70, 1328. (e) Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188. (f) Chen, C.-T.; Bettigeri, S.; Weng, S.-S.; Pawar, V. D.; Lin, Y.-H.; Liu, C.-Y.; Lee, W.-Z. J. Org. Chem. 2007, 72, 8175. (g) Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006, 128, 6308. (h) Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Proc. Natl. Acad. Sci. USA 2006, 103, 3522. (i) Chen, C.-T.; Lin, J.-S.; Kuo, J.-H.; Weng, S.-S.; Cuo, T.-S.; Lin, Y.-W.; Cheng, C.-C.; Huang, Y.-C.; Yu, J.-K.; Chou, P.-T. Org. Lett. 2004, 6, 4471. (j) Chen, C.-T.; Lin, Y.-H.; Kuo, T.-S. J. Am. Chem. Soc. 2008, 130, 12842.
    (23) (a) For X-ray crystal structure of VO(OTf)2‧5H2O, see: Magnussen, M.; Brock-Nannestad, T.; Bendix, J. Acta Crystallogr., Sec. C 2007, 63, m51. (b) For a preliminary study by using VO(OTf)2 in catalyzing thio- acetalization of aldehydes, see: De, S. K. J. Mol. Catal. A: Chem. 2005, 226, 77.
    (24) Kumar, A.; Jain, N.; Rana, S.; Chauhan, S. M. S. Synlett 2004, 2785.
    (25) Kazahaya, K.; Tsuji, S.; Sato, T. Synlett 2004, 1640.
    (26) (a) see: Ref. 18. (b) Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1994, 59, 4665. (c) see: Ref. 11a. (d) Fieser, L. F. J. Am. Chem. Soc. 1954, 76, 1945.
    (27) Under the same reaction conditions, intermolecular competition between equal molar of benzaldehyde and acetophenone was resulted with only aldehyde protected adduct 11a (94%, 1 h).
    (28) Gopinath, R.; Haque, S. J.; Patel, B. K. J. Org. Chem. 2002, 67, 5842.
    (29) By using 1.2 equiv of 1,2-ethanedithiol and 10 mol% of VO(OTf)2 for differential thioacetalization, it was afforded with higher chemical yields (90% and 87%) but lower chemoselectivities (89:11 and 91:9) in shorter reaction times (23 h and 28 h) for 12p/12q and 12r/12s, respectively.
    (30) (a) Ralls, J. W.; Riegel, B. J. Am. Chem. Soc. 1954, 76, 4479. (b) Sato, T.; Otera, J.; Nozaki, H. J. Org. Chem. 1993, 58, 4971. (c) see: Ref. 21a.
    (31) Ellervik, U.; Jacobsson, M.; Ohlsson, J. Tetrahedron 2005, 61, 2421.
    (32) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C. S. J. Org. Chem. 1986, 51, 404.
    (33) Yan, M.-C.; Chen, Y.-N.; Wu, H.-T.; Lin, C.-C.; Chen, C.-T.; Lin, C.-C. J. Org. Chem. 2007, 72, 299.
    (34) Karmas, G. Tetrahedron Lett. 1964, 5, 1093.
    (35) McAuliffe, J. C.; Hindsgaul, O. J. Org. Chem. 1997, 62, 1234.

    (1) For reviews, see: (a) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033. (b) Christoffers, J.; Mann, A. Angew. Chem. Int. Ed. 2001, 40, 4591. (c) Krause, N.; Hoffmann- Röder, A. Synthesis 2001, 171. (d) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481. (e) Kanemasa, S.; Ito, K. Eur. J. Org. Chem. 2004, 4741. (f) Comelles, J.; Moreno-Mañas, M.; Vallribera, A. ARKIVOC 2005, ix, 207. (g) Ma, J.-A.; Guo, H.-C. Angew. Chem. Int. Ed. 2006, 45, 354. (h) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279. (i) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 959. (j) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992.
    (2) (a) Ojima, I. Ed. Catalytic Asymmetric Synthesis; 2nd ed.; Wiley-VCH: Weinheim, Germany, 2000. (b) Fuhrhop, J.-H.; Li, G. Organic Synthesis: Concepts and Methods; 3rd ed.; Wiley-VCH: Weinheim, Germany, 2003. (c) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
    (3) (a) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313. (b) Gandelman, M.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2005, 44, 2393. (c) Takenaka, N.; Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 742. (d) Nishide, K.; Shigeta, Y.; Obata, K.; Node, M. J. Am. Chem. Soc. 1996, 118, 13103.
    (4) (a) Loh, T.-P.; Wei, L.-L. Synlett 1998, 975. (b) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700. (c) Kantam, M. L.; Roy, M.; Roy, S.; Subhas, M. S.; Sreedhar, B.; Choudary, B. M.; De, R. L. J. Mol. Catal. A: Chem. 2007, 265, 244. (d) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700.
    (5) (a) Srivastava,N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109. (b) Leitch, S.; Addison-Jones, J.; McCluskey, A. Tetrahedron Lett. 2005, 46, 2915. (c) Srivastava, N,; Banik, B. K. J. Org. Chem. 2003, 68, 2109.
    (6) (a) Kobayashi, S.; Kakumoto, K.; Sugiura, M. Org. Lett. 2002, 4, 1319. (b) Kovacik, I.; Wicht, D. K.; Grewal, N. S.; Glueck, D. S.; Incarvito, C. D.; Guzei, I. A.; Rheingold, A. L. Organometallics 2000, 19, 950.
    (7) (a) Xu, L.-W.; Xia, C.-G.; Hu, X.-X. Chem. Commun. 2003, 2570. (b) Chu, C.-M.; Huang, W.-J.; Lu, C.; Wu, P.; Liu, J.-T.; Yao, C.-F. Tetrahedron Lett. 2006, 47, 7375.
    (8) (a) Zhang, H.; Zhang, Y.; Liu, L.; Xu, H.; Wang, Y. Synthesis 2005, 2129. (b) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393–406.
    (9) (a) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (b) Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron 2004, 60, 1293. (c) Oi, S.; Sato, T.; Inoue, Y. Tetrahedron Lett. 2004, 45, 5051.
    (10) Janka, M,; He, W.; Haedicke, I. E.; Fronczek, F. R.; Frontier, A. J.; Eisenberg, R. J. Am. Chem. Soc. 2006, 128, 5312.
    (11) (a) Sadow, A. D.; Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004, 126, 14704. (b) Sadow, A. D.; Togni, A. J. Am. Chem. Soc. 2005, 127, 17012. (c) Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958. (d) Evans, D. A.; Thomson, R. J.; Franco, F. J. Am. Chem. Soc. 2005, 127, 10816. (e) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675. (f) Lee, W.-Z.; Wang, T.-L.; Tsang, H.-S.; Liu, C.-Y.; Chen, C.-T.; Kuo, T.-S. Organometallics 2009, 28, 652.
    (12) (a) Gaunt, M. J.; Spencer, J. B. Org. Lett. 2001, 3, 25. (b) Takasu, K.; Nishida, N.; Ihara, M. Synlett 2004, 1844. (c) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Chem. Commun. 2004, 1822.
    (13) (a) Wabnitz, T. C.; Spencer, J. B. Tetrahedron Lett. 2002, 43, 3891. (b) Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Gómez-Bengoa, E.; Garcıa, J. M. J. Am. Chem. Soc. 2004, 126, 9188. (c) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcıa, J. M.; Linden, A. J. Am. Chem. Soc. 2005, 127, 4154. (d) Kantam, M. L.; Neeraja, V.; Kavita, B.; Neelima, B.; Chaudhuri, M. K.; Hussainb, S. Adv. Synth. Catal. 2005, 347, 763. (e) Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 1721.
    (14) For Sc(III)-catalyzed enantioselective indole Friedel-Crafts alkylations, see: (a) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (b) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942. (c) Evans, D. A..; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.; Xu, R. J. Am. Chem. Soc. 2007, 129, 10029.
    (15) (a) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141. (b) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484.
    (16) (a) Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188. (b) Weng, S.-S.; Lin, Y.-D.; Chen, C.-T. Org. Lett. 2006, 8, 5633. (c) Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Proc. Natl. Acad. Sci. USA 2006, 103, 3522. (d) Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006, 128, 6308. (e) Barhate, N. B.; Chen, C.-T. Org. Lett. 2002, 4, 2529. (f) Chen, C.-T.; Lin, J.-S.; Kuo, J.-H.; Weng, S.-S.; Cuo, T.-S.; Lin, Y.-W.; Cheng, C.-C.; Huang, Y.-C.; Yu, J.-K.; Chou, P.-T. Org. Lett. 2004, 6, 4471.
    (17) Firouzabadi, H.; Iranpoor, N,; Jafari, A. A. Synlett 2005, 299.
    (18) (a) Kondo, T.; Mitsudo, T.-a. Chem. Rev. 2000, 100, 3205. (b) Gilchrist, T. L. Heterocyclic Chemistry; 3rd ed.; Addison Wesley Longman: Essex, 1997. (c) Okazaki, R. In Organosulfur Chemistry, Vol. 1; Page, P. Ed.; Academic Press: London, 1995, pp 225-258.
    (19) (a) Czarnik, A. W. Acc. Chem. Res. 1996, 29, 112. (b) Nguyen-Ba, N.; Brown, W. L.; Chan, L.; Lee, N.; Brasili, L.; Lafleur, D.; Zacharie, B. Chem. Commun. 1999, 1245. (c) Ashizawa, T.; Kawashima, K.; Kanda, Y.; Gomi, K.; Okabe, M.; Ueda, K.; Tamaoki, T. Anticancer Drugs 1999, 10, 829. (d) Dewick, P. M. Medicinal Natural Products; 2nd ed.; John Wiley & Sons: West Sussex, England, 2002. (e) Vardanyan, R. S.; Hruby, V. J. Synthesis of Essential Drugs; Elsevier: Amsterdam, 2006.
    (20) (a) Chibnik, S.; Foster, H. M.; Kaufman, H. A.; Glick, L. A. US Patent 3,409,664, 1968. (b) Kilsheimer, J. R.; Kaufman, H. A.; Foster, H. M.; Uriscoll, R.; Glick, L. A.; Napier, R. P. J. Agr. Food Chem. 1969, 17, 91.
    (21) (a) Corey, E. J.; Trybulski, E. J.; Melvin, L. S. Jr.; Nicolaou, K. C.; Secrist, J. A.; Lett, R.; Scheldarke, P. W.; Falck, J. R.; Brunelle, D. J.; Haslanger, M. F.; Kim, S.; Yoo, S. J. Am. Chem. Soc. 1978, 100, 4618. (b) Enders, D.; Haertwig, A.; Raabe, G.; Runsink, J. Angew Chem., Int. Ed. 1996, 35, 2388. (c) Panek, J. S.; Jain, N. F. J. Org. Chem. 2001, 66, 2747. (d) Sekino, E.; Kumamoto, T.; Tanaka, T.; Ikeda, T.; Ishikawa, T. J. Org. Chem. 2004, 69, 2760. (e) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045. (f) Shi, Y.-L.; Shi, M. Org. Biomol. Chem. 2007, 5, 1499. (g) Zhou, A.; Hanson, P. R. Org. Lett. 2008, 10, 2951.
    (22) (a) Hosokawa, T.; Shinohara, T.; Ooka, Y.; Murahashi, S.-I. Chem. Lett. 1989, 2001. (b) Miller, K. J.; Kitagawa, T. T.; Abu-Omar, M. M. Organometallics 2001, 20, 4403. (c) Lee, A. S.-Y.; Wang, S.-H.; Chang, Y.-T.; Chu, S.-F. Synlett 2003, 2359.
    (23) (a) Jenner, G. Tetrahedron Lett. 2001, 42, 4807. (b) Jenner, G. Tetrahedron 2002, 58, 4311. (c) Kumamoto, K.; Ichikawa, Y.; Kotsuki, H. Synlett 2005, 2254.
    (24) For reviews, see: (a) Georg, G. I. The Organic Chemistry of β-Lactams; VCH: New York, 1997. (b) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991. (c) Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290. (d) Sewald, N. Angew. Chem., Int. Ed. 2003, 42, 5794. (e) Palacios, F.; Alonso, C.; Santos, J. M. Chem. Rev. 2005, 105, 899. (f) Xu, L.-W.; Xia, C.-G. Eur. J. Org. Chem. 2005, 633. (g) Juaristi, E.; Soloshonok, V. A. Enantioselective Synthesis of β-Amino Acids; 2nd ed.; Wiley-VCH: New York, 2005.
    (25) (a) Among 14 different oxometallic species, only MoO2Cl2 and VO(OTf)2 show promising catalytic efficiency. (b) For X-ray crystal structure of VO(OTf)2‧5H2O, see: Magnussen, M.; Brock-Nannestad, T.; Bendix, J. Acta Crystallogr., Sec. C 2007, 63, m51.
    (26) The chemical yields are around 34-50% when the reactions were performed at ambient temperature in neat benzamide.
    (27) (a) Lee, A. S.-Y.; Wang, S.-H.; Chang, Y.-T.; Chu, S.-F. Synlett 2003, 2359. (b) Molander, G. A.; Stengel, P. A. Tetrahedron 1997, 53, 8887.
    (28) For reviews, see: (a) Pudovik, A. N.; Konovalova, I. V. Synthesis 1979, 81. (b) Wozniak, L.; Chojnowski, J. Tetrahedron 1989, 45, 2465. (c) Kolodiazhnyi, O. I. Tetrahedron: Asymmetry 1998, 9, 1279. (d) Baillie, C.; Xiao, J. Curr. Org. Chem. 2003, 7, 477. (e) Tanaka, M. Top. Curr. Chem. 2004, 232, 25. (f) Kolodiazhnyi, O. I. Tetrahedron: Asymmetry 2005, 16, 3295. (g) Enders, D.; Saint-Dizier, A.; Lannou, M.-I.; Lenzen, A. Eur. J. Org. Chem. 2006, 29. (h) Troev, K. D. Chemistry and Application of H-Phosphonates; Elsevier: Amsterdam, 2006.
    (29) (a) Evans, D. A.; Hurst, K. M.; Takacs, J. M. J. Am. Chem. Soc. 1978, 100, 3467. (b) Liotta, D.; Sunay, U.; Ginsberg, S. J. Org. Chem. 1982, 47, 2227. (c) Mori, I.; Kimura, Y.; Nakano, T.; Matsunaga, S.-I.; Iwasaki, G.; Ogawa, A.; Hayakawa, K. Tetrahedron Lett. 1997, 38, 3543.
    (30) Overall, 1 equiv of Ac2O is needed in the acetylation of hydrogen phosphite and 1 equiv of HOAc (the byproduct in the acetylation step) is needed for the protonation of II.
    (31) About 15-20% yields of the addition products 23h and 23j were isolated without the addition of vanadyl triflate at 70 °C for 48 h.
    (32) For reviews, see: (a) Olah, G. A.; Kishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 293-339. (b) Jørgensen, K. A. Synthesis 2003, 1117. (c) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem. Int. Ed. 2004, 43, 550.
    (33) (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. (b) Gilchrist, T. L. Heterocyclic Chemistry; 3rd ed.; Addison Wesley Longman: Essex, 1997.

    下載圖示
    QR CODE