簡易檢索 / 詳目顯示

研究生: 林欣仕
Hsin-Shih Lin
論文名稱: 不同落地訓練時期對成長中母鼠骨骼之影響
Effect of Free-fall Landing Training in Different Training Periods on Bone: An Animal Study in Growing Female Rats
指導教授: 王鶴森
Wang, Ho-Seng
黃滄海
Huang, Tsang-Hai
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 運動高衝擊骨再塑動物模型
英文關鍵詞: exercise, high-impact, bone remodeling, animal mode
論文種類: 學術論文
相關次數: 點閱:66下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討不同時間長度之落地訓練對骨骼的影響,以釐清骨骼適應高衝擊性運動在時間序列上的變化。方法:使用96隻週齡7週的Wistar雌性大鼠,在四個時間點分別設置落地訓練組與對照組,每組動物數為12,依序為1週落地訓練組 (E1)、1週對照組 (C1)、2週落地訓練組 (E2)、2週對照組 (C2)、4週落地訓練組 (E4)、4週對照組 (C4)、8週落地訓練組 (E8)、8週對照組 (C8),落地訓練組每日接受30次自40公分的高處落下著地之訓練,並於每週的第一次訓練與第五次訓練架設測力板以記錄地面反作用力 (ground reaction force, GRF) 作為運動強度探討;對照組則維持正常的籠內活動。各組實驗動物分別於4個時間點(訓練1、2、4及8週之後)犧牲,並採集其左右的股骨與脛骨,進行骨密度、組織型態、組織生物力學、斷面參數等測量與分析。採用獨立樣本t檢定與單因子變異數分析 (α=.05)。結果:大鼠在第一週第一天的落地GRF值顯著高於其他時間點 (p<.05);股骨的皮質骨面積與厚度呈現E1顯著低於C1、E4顯著高於C4,脛骨則是E8在皮質骨面積、皮質骨厚度及斷面轉動慣量矩顯著高於C8;股骨與脛骨海綿骨的骨生成指數(鹼性磷酸酶染色)、骨密度與結構參數(包括骨量比率及骨小樑厚度)皆為E8顯著高於C8組,而脛骨的海綿骨骨吸收指數(破骨細胞數)則是E8顯著低於C8;股骨的斷裂負荷值E1顯著低於C1,而E8的股骨與脛骨皆有顯著高於C8的斷裂負荷值。結論:皮質骨承受落地訓練初期時會因衝擊過大造成骨骼結構與骨生物力學強度暫時性的變弱,經過長期訓練適應之後則可恢復並增強;對快速成長中之海綿骨而言,訓練初期雖無法觀察到訓練效果,唯長期訓練則可呈現結構強化並提升骨密度。

    Purpose: To investigate the effects of a time course free-fall landing training on bone metabolism in growing female rats. Methods: Ninety-six rats (7 weeks old) were assigned into eight groups (n=12/group), which were E1, E2, E4 E8, C1, C2, C4 and C8. Animals of the E1, E2, E4 and E8 groups were respectively subjected to 1, 2, 4 and 8 weeks free-fall landing training, in which animals were free-fallen from a height of 40 cm for 30 times per day; 5 days per week. The C1, C2, C4 and C8 groups served as the time matched groups. Additionally, we collected ground reaction force (GRF) data from force plate on day 1 and day 5 every week for 8 weeks. We used methods of micro-computed tomography (μCT), static histomorphometry, geometry measurement and tissue biomechanical testing to estimate the effects of free fall landing on growing bone. Results: Peak GRF on day 1 in first week was significantly higher than other time points (p<.05). In the geometry measurement of femur, E1 group was significantly lower than C1 group whereas E4 was significantly higher than C4 in cortical area and thickness. In addition, E8 group was significantly higher than C8 in cortical area, cortical thickness and cross-sectional moment of inertia of tibiae. In trabecular bone formation index (alkaline phosphatase staining), bone mineral density and trabecular architectures (e.g. bone volume ratio, trabecular thickness) of femora and tibiae, E8 groups were significantly higher than C8 groups. In addition, E8 was significantly lower than C8 in trabecular bone resorption index (osteoclast number) of tibiae. In Biomechanical testing, fracture load of femora was significantly lower in E1 group as compared to C1. Conversely, E8 group was higher than C8 group in femora and tibiae. Conclusion: Landing training would cause a transiently compromised bone material in initial phase of cortical bone, and a recovery and enhancement in bone strength would occur following a longer period of training. Efficacy of landing training on trabecular bone was only showed after the 8-week training period.

    口試委員與系主任簽字之論文通過簽名表 .............i 論文授權書 ...................................ii 中文摘要 ....................................iii 英文摘要 .....................................iv 謝誌 .........................................v 目 次 .......................................vi 表 次 ......................................viii 圖 次 .......................................ix 第壹章 緒論 ...................................1 第一節 問題背景 ................................ 1 第二節 研究目的 .................................3 第三節 名詞操作性定義 ............................3 第四節 研究限制 .................................3 第五節 研究重要性 ................................4 第貳章 文獻探討 .................................5 第一節 骨再塑的機制 ...............................5 第二節 機械性負荷與骨再塑 ..........................7 第三節 落地運動對骨骼的影響之動物實驗評析 ...........13 第四節 總結 .....................................16 第參章 研究方法 .................................17 第一節 實驗動物 ..................................17 第二節 實驗設計 ..................................17 第三節 骨骼樣本之收集與製備 ........................19 第四節 分析方法 .................................. 19 第五節 統計分析 ...................................26 第肆章 結果 .......................................27 第一節 訓練前與訓練後落地訓練組與對照組的體重比較 ......27 第二節 身體與骨骼的長度 .............................27 第三節 八週落地的地面反作用力變化 ....................29 第四節 骨骼斷面參數 ................................31 第五節 海綿骨的骨生成與骨吸收參數 ....................36 第六節 骨密度與海綿骨結構 ...........................39 第七節 骨骼生物力學特性 .............................44 第伍章 討論 ........................................50 第一節 落地訓練的動物模型:實驗控制的適當性 ............50 第二節 不同期間的落地衝擊對皮質骨的影響 ................52 第三節 不同期間的落地衝擊對海綿骨的影響 ................54 第四節 綜合討論 .....................................55 第五節 結論與建議 ....................................60 引用文獻 ............................................61 附錄 ...............................................67 附錄一 縮寫表 .......................................67 附錄二 破骨細胞的染色步驟與計算分析 ....................69 附錄三 骨骼鹼性磷酸酶的染色步驟與計算分析 ...............71 附錄四 落地訓練的過程圖示 .............................73 附錄五 動物實驗同意書 .................................74 個人小傳 .............................................80

    林欣仕、王鶴森、黃滄海 (2010,12月)。短期的落地訓練對成長中雌大鼠的骨骼材料特性之影響 [摘要]。2010體育運動學術團體聯合年會暨學術研討會口頭發表,台北市

    Ajubi, N. E., Klein-Nulend, J., Alblas, M. J., Burger, E. H., & Nijweide, P. J. (1999). Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. The American Journal of Physiology, 276(1 Pt 1), E171-178.

    Baron, R., Tross, R., & Vignery, A. (1984). Evidence of sequential remodeling in rat trabecular bone: Morphology, dynamic histomorphometry, and changes during skeletal maturation. The Anatomical Record, 208(1), 137-145.

    Bass, S. L., Saxon, L., Daly, R. M., Turner, C. H., Robling, A. G., Seeman, E., & Stuckey, S. (2002). The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: A study in tennis players. Journal of Bone and Mineral Research, 17(12), 2274-2280.

    Bouassida, A., Zalleg, D., Bouassida, S., Zaouali, M., Feki, Y., Zbidi, A., & Tabka, Z. (2006). Leptin, its implication in physical exercise and training: A short review. Journal of Sports Science and Medicine 5, 172-181.

    Burr, D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30(5), 781-786.

    Chen, N. X., Ryder, K. D., Pavalko, F. M., Turner, C. H., Burr, D. B., Qiu, J., & Duncan, R.L. (2000). Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. American Journal of Physiology. Cell Physiology, 278(5), C989-997.

    Chen, X. Y., Zhang, X. Z., Guo, Y., Li, R. X., Lin, J. J., & Wei, Y. (2008). The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading. Clinical Biomechanics (Bristol, Avon), 23 Suppl 1, S88-95.

    Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of The American Society Nephrology,, 3 Suppl 3, S131-139.

    Cooper, C., Cawley, M., Bhalla, A., Egger, P., Ring, F., Morton, L., & Barker, D. (1995). Childhood growth, physical activity, and peak bone mass in women. Journal of Bone and Mineral Research, 10(6), 940-947.

    Daly, R. M., Rich, P. A., Klein, R., & Bass, S. (1999). Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts. Journal of Bone and Mineral Research, 14(7), 1222-1230.

    Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A. F., Beil, F. T., … Karsenty, G. (2000). Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell, 100(2), 197-207.

    Duncan, R. L., & Turner, C. H. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International, 57(5), 344-358.

    Edwards, W. B., Ward, E. D., Meardon, S. A., & Derrick, T. R. (2009). The use of external transducers for estimating bone strain at the distal tibia during impact activity. Journal of Biomechanical Engineering, 131(5), 051009.

    Finni, T., Komi, P. V., & Lepola, V. (2000). In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. European Journal of Applied Physiology, 83(4 -5), 416-426.

    Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. Journal of Bone and Mineral Research, 16(1), 148-156.

    Godfrey, R. J., Madgwick, Z., & Whyte, G. P. (2003). The exercise-induced growth hormone response in athletes. Sports Medicine, 33(8), 599-613.

    Guadalupe-Grau, A., Fuentes, T., Guerra, B., & Calbet, J. A. (2009a). Exercise and bone mass in adults. Sports Medicine, 39(6), 439-468.

    Guadalupe-Grau, A., Perez-Gomez, J., Olmedillas, H., Chavarren, J., Dorado, C., Santana, A.,…Calbet, J. A. (2009b). Strength training combined with plyometric jumps in adults: Sex differences in fat-bone axis adaptations. Journal of Applied Physiology, 106(4), 1100-1111.

    Hamrick, M. W., & Ferrari, S. L. (2008). Leptin and the sympathetic connection of fat to bone. Osteoporosis International, 19(7), 905-912.

    Honda, A., Sogo, N., Nagasawa, S., Shimizu, T., & Umemura, Y. (2003). High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as sham rats. Journal of Applied Physiology, 95(3), 1032-1037.

    Honda, A., Umemura, Y., & Nagasawa, S. (2001). Effect of high-impact and low-repetition training on bones in ovariectomized rats. Journal of Bone and Mineral Research, 16(9), 1688-1693.

    Hsieh, Y. F., & Silva, M. J. (2002). In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. Journal of Orthopaedic Research, 20(4), 764-771.

    Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008b). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. Journal of Bone and Mineral Metabolism, 26(4), 350-357.

    Huang, T. H., Lin, H. S., Chen, H. I., & Yang, R. S. (2011). The effects of systemic chemical sympathectomy on local bone loss induced by sciatic neurectomy. Journal of Orthopaedic Science, 16(5), 629-637.

    Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. Journal of Applied Physiology, 95(1), 300-307.

    Huang, T. H., Yang, R. S., Hsieh, S. S., & Liu, S. H. (2002). Effects of caffeine and exercise on the development of bone: A densitometric and histomorphometric study in young Wistar rats. Bone, 30(1), 293-299.

    Iwamoto, J., Takeda, T., & Sato, Y. (2005). Effect of treadmill exercise on bone mass in female rats. Experimental Animals, 54(1), 1-6.

    Janz, K. F., Rao, S., Baumann, H. J., & Schultz, J. L. (2003). Measuring children's vertical ground reaction forces with accelerometry during walking, running, and jumping: The Iowa Bone Development Study. Pediatric Exercise Science, 15(1), 34-43.

    Judex, S., & Zernicke, R. F. (2000a). Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone? Bone, 26(2), 153-159.

    Judex, S., & Zernicke, R. F. (2000b). High-impact exercise and growing bone: Relation between high strain rates and enhanced bone formation. Journal of Applied Physiology, 88(6), 2183-2191.

    Kato, T., Terashima, T., Yamashita, T., Hatanaka, Y., Honda, A., & Umemura, Y. (2006). Effect of low-repetition jump training on bone mineral density in young women. Journal of Applied Physiology, 100(3), 839-843.

    Knothe Tate, M. L., Knothe, U., & Niederer, P. (1998). Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. The American Journal of Medical Sciences, 316(3), 189-195.

    Lin, H. S., Huang, T. H., Mao, S. W., Tai, Y. S., Chiu, H. T., Cheng, K. Y. B., & Yang, R. S. (2011). A short-term free-fall landing enhances bone formation and bone material properties. Journal of Mechanics in Medicine and Biology, 11(5), 1125-1139.

    Mcclay, I. S., Robinson, J. R., Andriacchi, T. P., Frederick, E. C., Gross, T., Martin, P., … Peter, C. (1994). A Profile of ground reaction forces in professional basketball. Journal of Applied Biomechanics, 10(3), 222-236.

    Miller, S. C., de Saint-Georges, L., Bowman, B. M., & Jee, W. S. (1989). Bone lining cells: Structure and function. Scanning Microscopy, 3(3), 953-960.

    Nagasawa, S., Honda, A., Sogo, N., & Umemura, Y. (2008). Effects of low-repetition jump exercise on osteogenic response in rats. Journal of Bone and Mineral Metabolism, 26(3), 226-230.

    Noble, B. S., Peet, N., Stevens, H. Y., Brabbs, A., Mosley, J. R., Reilly, G. C., … Lanyon, L. E. (2003). Mechanical loading: Biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. American Journal of Physiology. Cell Physiology, 284(4), C934-943.

    Notomi, T., Okazaki, Y., Okimoto, N., Saitoh, S., Nakamura, T., & Suzuki, M. (2000). A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. European Journal of Applied Physiology, 83(6), 469-474.

    Notomi, T., Okazaki, Y., Okimoto, N., Tanaka, Y., Nakamura, T., & Suzuki, M. (2002). Effects of tower climbing exercise on bone mass, strength, and turnover in orchidectomized growing rats. Journal of Applied Physiology, 93(3), 1152-1158.

    Notomi, T., Okimoto, N., Okazaki, Y., Nakamura, T., & Suzuki, M. (2003). Tower climbing exercise started 3 months after ovariectomy recovers bone strength of the femur and lumbar vertebrae in aged osteopenic rats. Journal of Bone and Mineral Research, 18(1), 140-149.

    Notomi, T., Okimoto, N., Okazaki, Y., Tanaka, Y., Nakamura, T., & Suzuki, M. (2001). Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. Journal of Bone and Mineral Research, 16(1), 166-174.

    Ohashi, N., Robling, A. G., Burr, D. B., & Turner, C. H. (2002). The effects of dynamic axial loading on the rat growth plate. Journal of Bone and Mineral Research, 17(2), 284-292.

    Robling, A. G. (2009). Is bone's response to mechanical signals dominated by muscle forces? Medicine & Science in Sports & Exercise, 41(11), 2044-2049.

    Robling, A. G., Castillo, A. B., & Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering, 8, 455-498.

    Rosa, B. V., Firth, E. C., Blair, H. T., Vickers, M. H., Morel, P. C., & Cockrem, J. F. (2010). Short-term voluntary exercise in the rat causes bone modeling without initiating a physiological stress response. American Journal of Physiology. Regulatory, Integrative Comparative Physiology, 299(4), R1037-1043.

    Takada, H., Washino, K., Hanai, T., & Iwata, H. (1998). Response of parathyroid hormone to exercise and bone mineral density in adolescent female athletes. Environmental Health and Preventive Medicine, 2(4), 161-166.

    Tran Van, P. T., Vignery, A., & Baron, R. (1982). Cellular kinetics of the bone remodeling sequence in the rat. The Anatomical Record, 202(4), 445-451.

    Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone, 23(5), 399-407.

    Turner, C. H. (2006). Bone strength: Current concepts. Annals of The New York Academy Sciences, 1068, 429-446.

    Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608.

    Umemura, Y., Ishiko, T., Tsujimoto, H., Miura, H., Mokushi, N., & Suzuki, H. (1995). Effects of jump training on bone hypertrophy in young and old rats. International Journal of Sports Medicine, 16(6), 364-367.

    Umemura, Y., Ishiko, T., Yamauchi, T., Kurono, M., & Mashiko, S. (1997). Five jumps per day increase bone mass and breaking force in rats. Journal of Bone and Mineral Research, 12(9), 1480-1485.

    Umemura, Y., Nagasawa, S., Honda, A., & Singh, R. (2008). High-impact exercise frequency per week or day for osteogenic response in rats. Journal of Bone and Mineral Metabolism, 26(5), 456-460.

    Verborgt, O., Gibson, G. J., & Schaffler, M. B. (2000). Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone and Mineral Research, 15(1), 60-67.

    Welch, J. M., Turner, C. H., Devareddy, L., Arjmandi, B. H., & Weaver, C. M. (2008). High impact exercise is more beneficial than dietary calcium for building bone strength in the growing rat skeleton. Bone, 42(4), 660-668.

    Welch, J. M., Weaver, C. M., & Turner, C. H. (2004). Adaptations to free-fall impact are different in the shafts and bone ends of rat forelimbs. Journal of Applied Physiology, 97(5), 1859-1865.

    Xiong, J., & O'Brien, C. A. (2012). Osteocyte RANKL: New insights into the control of bone remodeling. Journal of Bone and Mineral Research, 27(3), 499-505.

    下載圖示
    QR CODE