簡易檢索 / 詳目顯示

研究生: 尹邦倫
Ying, Pang-Lun
論文名稱: 低衝擊開發設施的空間配置對於逕流削減之效益評估
Effectiveness evaluation of runoff reduction effect of spatially-distributed low impact development facilities
指導教授: 李宗祐
Lee, Tsung-Yu
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 122
中文關鍵詞: 低衝擊開發逕流削減暴雨逕流管理模式
英文關鍵詞: Low Impact Development, LID, SWMM, reduction effect
DOI URL: http://doi.org/10.6345/THE.NTNU.DG.007.2019.A05
論文種類: 學術論文
相關次數: 點閱:129下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來面對因全球暖化導致極端氣候事件的短延時強降雨事件頻率增加,而使得淹水事件頻傳。在現行基地保水法規的規範下,仍無法避免新建案所增加的都市雨水逕流。唯有透過低衝擊開發(Low impact development, LID)設施的設置,才得以減少都市地區面對極端氣候事件下所面臨之威脅。
    本研究以低衝擊開發設施中之綠屋頂為例,並以美國環境保護署(U.S.EPA)開發之暴雨管理模式(Storm Water Managenment Model,SWMM),作為模擬分析之工具,以臺北市內湖區的環山排水分區作為研究區域,配合當地土地利用相關的背景參數設定,設計不同比例綠屋頂配置百分比(平均配置於子排水分區)之情境與不同比例下兩種空間配置(集中於上游或下游)之情境,模擬各種情境下的綠屋頂的設置對逕流與洪峰流量之削減效益。
    結果顯示,在78.8[mm/hr]的設計降雨下(台北市排水設計標準),10%不透水面設置綠屋頂且平均分布於子排水分區的情境可分別消減洪峰及總逕流量達5-7%及5-8%,且因此可承受降雨強度達84 [mm/hr]之事件,而不超過排水設計標準;80%不透水面設置綠屋頂且平均分布於子排水分區的情境可分別消減洪峰及總逕流量達46-55%及46-52%,且因此可承受降雨強度達118 [mm/hr]之事件。削減的程度及提升降雨強度的容受能力隨著綠屋頂所佔不透水面百分比的增加而線性增加,平均每增加10%的綠屋頂,可以分別削減6.1%及6.7%的總逕流量及洪峰流量,且因此可多承受4.4[mm/hr]的降雨。然而綠屋頂的空間配置對於削減洪峰流量的影響較為顯著,但整體逕流的削減效率不若直接增加綠屋頂配置百分比。研究結果顯示,綠屋頂能有效的降低因日益增加短延時強降雨事件下所引發之都市逕流。

    High-intensity rainfall events have been increasing owing to global warming and the consequent climate change, resulting in more frequent flooding. Although there are legal regulations to limit surface runoff after constructions, surface runoff inevitably increases compared to pre-construction condition. Low impact development (LID) facilities are the solutions to reduce the impacts of flooding from the urban development.
    In this study, Storm Water Management Model (SWMM) was chosen, and green roof, one of the LID facilities, were used as an example to evaluate the effectiveness of runoff reduction at the given spatially-distributed scenarios. Huan-Shan Drainage District, Neihu, Taipei was the study area. Spatially-distributed scenarios included uniformly-distributed green roof (where could be placed) within the drainage district and centrally-distributed in the upstream/downstream area of the drainage district.
    The results showed that at the design rainfall, i.e. 78.8 [mm/hr] (the design standard for the drainage system in Taipei), total runoff and peak flow could be reduced by 5-7% and 5-8%, respectively, if 10% of the impervious surface was uniformly placed with green roof. In this case, the drainage system could hence tolerate 84 [mm/hr] rainfall event without surpassing the drainage capacity. In the case of 80%, total runoff and peak flow could be reduced by 46-55% and 46-52%, respectively, and the drainage system could tolerate as much as 118 [mm/hr]. The reduction rates of total runoff/peak flow increased linearly with the increase of green roof placement percentages. At the increment of every 10% green roof placement, the total runoff and peak flow could be reduced by 6.1% and 6.7%, respectively, and the drainage system could tolerate more rainfall, i.e. 4.4[mm/hr]. There was no distinct difference among the centrally-distributed scenarios compared to the uniformly-distributed ones, although centrally-distributed ones resulted in relatively more reduction for the peak flow. The results supported the effectiveness of green roof on reducing the surface runoff, which could be practically applied in the urban to reduce the threat of increased high-intensity rainfall event.

    摘要 I Abstract II 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 2 第二章 文獻回顧 5 2.1 建築基地保水設計技術規範 5 2.2 低衝擊開發設施 8 2.3 SWMM之應用 14 第三章 研究方法與研究架構 17 3.1 研究區域 17 3.2 子排水分區簡介 18 3.3 SWMM介紹 25 3.4 模式建置與模擬流程 32 3.4.1 子排水分區模式設定與管線配置 33 3.4.2 LID參數設定 37 3.4.3 LID設置情境 39 3.5 設計降雨 40 3.6 合理化公式介紹 42 第四章 結果與討論 45 4.1 設計雨型與合理化公式驗證模式結果 45 4.2 各子排水分區綠屋頂設置百分比變化對逕流削減之影響 45 4.3 固定綠屋頂百分比設置於各子排水分區上下游對逕流削減之影響 51 4.3.1 綠屋頂設置於S1區上下游之影響 51 4.3.2 綠屋頂設置於S2區上下游之影響 65 4.3.3 綠屋頂設置於S4區上下游之影響 77 4.3.4 綠屋頂設置於S5區上下游之影響 88 4.4 綠屋頂設置百分比所對應之降雨承載力 100 第五章 結論與建議 109 5.1 結論 109 5.2 建議 110 參考文獻 113

    中華民國內政部消防署全球資訊網(2017)。 Nfa.gov.tw. Retrieved 6 November 2017,from http://www.nfa.gov.tw/main/Content.aspx?ID=&MenuID=873

    內政部建築研究所(2015)。建築基地保水現況分析及設計技術規範檢討與修訂之研究。

    內政部營建署(2015)。水環境低衝擊開發設施操作手冊。內政部營建署。

    白櫻芳(2016)。建築技術規則雨水貯集滯洪設施減洪效益評估與法令探討研究。內政部建築研究所自行研究報告。

    何宇申(2013)。FLO-2D 應用於中壢都會區的淹水分析。臺灣大學生物環境系統工程學研究所學位論文,1-91。

    何明錦、廖朝軒、陳瑞鈴、鄭元良、蔡綽芳(2013)。社區及建築基地減洪防洪規劃手冊-2013年版。 內政部建築研究所。

    余濬(2003)。降雨強度之推算與應用。科技圖書出版社。

    李欣輯、魏曉萍、劉俊志、楊昇學、葉克家、黃嬿蓁(2014)。極端降雨事件之淹水模擬分析與損失評估(NCDR 101-T29)。新北市:國家災害防救科技中心。

    林子平(2002)。 都市水循環之研究-地表不透水率之調查及逕流時實測解析 。 國立成功大學建築研究所。

    林郁汶(2013)。以SWMM模式評估花槽減緩地表逕流之效益。逢甲大學水利工程與資源保育學系

    林憲德、林子平(2001)。基地保水性能評估之研究. 建築學報, (38), 67-81.

    林憲德、林子平、蔡耀賢(2015)。綠建築評估手冊-基本型(2015年版)。內政部建築研究所。

    徐年盛,黃耀賢,劉宏仁,鄭文明 (2016)。 低衝擊開發設施最佳化配置之研究-以臺北市民生社區為例。中興工程, (131),77-86。

    徐硯庭(2014)。低衝擊開發運用在高都市化地區的減洪效益- 以新北市中永和地區為例 。國立臺灣大學工學院土木工程學系。

    郭昭廷(2018)。LID導入新舊城區對於逕流分擔影響之研究。國立臺北科技大學土木工程系土木與防災碩士班

    陳明仁(2014)。從臺北市基地開發規定設置雨水流出抑制設施談洪水災害管理。台灣物業管理學會第8屆研究成果論文發表會,景文科技大學。

    陳嫈瑜. (2007).台灣地區重大天然災害-災損統計篇,國研科技,13,20-22.

    廖朝軒、蔡燿隆(2002)。從健全都市水環境談雨水滯蓄措施之應用。

    Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273.

    Alexandri, E., & Jones, P. (2007). Developing a one-dimensional heat and mass transfer algorithm for describing the effect of green roofs on the built environment: Comparison with experimental results. Building and Environment, 42(8), 2835-2849.

    Ascione, F., Bianco, N., de’Rossi, F., Turni, G., & Vanoli, G. P. (2013). Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?. Applied Energy, 104, 845-859..

    Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A. S., Galarneau, M., Prévost, M., & Dorner, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 499, 238-247.

    Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling–Urban drainage and beyond. Environmental Modelling & Software, 54, 88-107.

    Bengtsson, L., Grahn, L., & Olsson, J. (2005). Hydrological function of a thin extensive green roof in southern Sweden. Hydrology Research, 36(3), 259-268.

    Berghage, R., Jarrett, A., Beattie, D., Kelley, K., Husain, S., Rezai, F. ... & Hunt, W. (2007). Quantifying evaporation and transpirational water losses from green roofs and green roof media capacity for neutralizing acid rain. National Decentralized Water Resources Capacity Development Project.

    Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological engineering, 36(4), 351-360.

    Bernie V. Rabe(2013). Structural Considerations in Designing Green Roofs. Parsons engineer. Bianchini F, Hewage K. Probabilistic social cost-benefit analysis for green roofs: a lifecycle approach. Build Environ 2012; 58:152–62.

    Booth, D., & Jackson, C. (1997). Urbanization of Aquatic Systems: Degradation Thresholds, Stormwater Detection, and the Limits of Mitigation. Journal of the American Water Resources Association, 33(5), 1077-1090.

    Brown, R., Keath, N., & Wong, T. (2009). Urban water management in cities: historical, current and future regimes. Water science and technology, 59(5), 847-855.

    Burszta-Adamiak, E., & Mrowiec, M. (2013). Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36-42.

    Carpenter J, Zhou J. Life cycle analysis of a St. Louis flat roof residential retrofit for improved energy efficiency. In: Proc. ICSDEC 2012-building energy use modelling and, energy efficiency; 2013. p. 20–8.

    Carter, T. L., & Rasmussen, T. C. (2006). HYDROLOGIC BEHAVIOR OF VEGETATED ROOFS 1. JAWRA Journal of the American Water Resources Association, 42(5), 1261-1274.

    Castleton HF, Stovin V, Beck SBM, Davison JB. Green roofs; building energy savings and the potential for retrofit. Energy Build 2010;42:1582–91.

    Chan ALS, Chow TT. Evaluation of overall thermal transfer value (OTTV) for commercial buildings constructed with green roof. Appl Energy 2013;107:10–24.

    Chen CF. Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecol Eng 2013;52:51–8.

    Connelly M, Hodgson M. Laboratory experimental investigation of the acoustical characteristics of vegetated roofs. J Acoust Soc Am 2011;129:2393.

    Cox, B. K. (2010). The influence of ambient temperature on green Roof R-values.

    Currie, B. A., & Bass, B. (2008). Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosystems, 11(4), 409-422.

    DeNardo JC, Jarrett AR, Manbeck HB, Beattie DJ, Berghage RD. Stormwater mitigation and surface temperature reduction by green roofs. Trans ASABE 2005; 48(4):1491–6.

    DeNardo JC, Jarrett AR, Manbeck HB, Beattie DJ, Berghage RD. Stormwater detention and retention abilities of green roofs. In: World water and environmental resources congress, June 23–26, 2003. PA, United States: ASCE, Philadelphia; 2003. p. 1639–45.

    Dunnett, N., & Kingsbury, N. (2008). Planting green roofs and living walls. Portland, OR: Timber press.
    Emilsson T. Vegetation development on extensive vegetated green roofs: influence of substrate composition, establishment method and species mix. Ecol Eng 2008; 33(3–4):265–77.

    Fioretti R, Palla A, Lanza LG, Principi P. Green roof energy and water related performance in the Mediterranean climate. Build Environ 2010; 45:1890–904.

    Fletcher, T., Shuster, W., Hunt, W., Ashley, R., Butler, D., & Arthur, S. et al. (2014). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.

    Geldof, G. (1995). Adaptive water management: Integrated water management on the edge of chaos. Water Science And Technology, 32(1).

    Getter KL, Rowe DB, Andresen JA, Wichman IS. Seasonal heat flux properties of an extensive green roof in a Midwestern U.S. climate. Energy Build 2011; 43:3548–57.

    Gironás, J., Roesner, L. A., Rossman, L. A., & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software, 25(6), 813-814.

    Hathaway AM, Hunt WF, Jennings GD. A field study of green roof hydrologic and water quality performance. Am Soc Agric Biol Eng 2008; 51(1):37–44.

    Hinman, C. (2005). Low impact development: Technical guidance manual for Puget Sound. Puget Sound Action Team.

    Jacobson, C. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal Of Environmental Management, 92(6), 1438-1448.

    Jaffal I, Ouldboukhitine S, Belarbi R. A comprehensive study of the impact of green roofs on building energy performance. Renew Energy 2012;43:157–64.

    Jia, H., Lu, Y., Shaw, L. Y., & Chen, Y. (2012). Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 84, 112-119.

    Jim CY. Effect of vegetation biomass structure on thermal performance of tropical green roof. Landscape Ecol Eng 2012;8:173–87.

    Kong, F., Ban, Y., Yin, H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 95, 132-142.

    Kumar R, Kaushik SC. Performance evaluation of green roof and shading for thermal protection of buildings. Build Environ 2005;40(11):1505–11.

    Lanham, J. K. (2007). Thermal performance of green roofs in cold climates. In Masters abstracts international (Vol. 46, No. 05).

    Liu KY, Baskaran BA. NRCC-46412: thermal performance of green roofs through field evaluation. Ottawa, Ontario: National Research Council Canada;2003 [p. 1–10].

    Martin, P., Turner, B., Waddington, K., Pratt, C., Campbell, N., Payne, J., & Reed, B. (2000). Sustainable urban drainage systems: design manual for Scotland and Northern Ireland. C521. CIRIA, London, UK.

    Mentens, J., Raes, D., Hermy, M., (2006). Green Roofs as a Tool for Solving the Rainwater Runoff Problem in the Urbanized 21st Century? Landscape and Urban Planning, 77:217-226.

    Morau D, Rakotondramiarana H, Andriamamonjy Al. Simple model for the theoretical survey of the green roof thermal behavior. J Technol Innovat Renew Energy 2012; 1(2):92–102.

    Mouritz, M. (1996). Sustainable urban water systems: policy and professional praxis (Doctoral dissertation, Murdoch University).

    Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants. Urban Ecosystems, 15(3), 697-708.

    National Research Council. (2009). Urban stormwater management in the United States. National Academies Press.

    Notaro, V., Liuzzo, L., & Freni, G. (2016). A BMA Analysis to Assess the Urbanization and Climate Change Impact on Urban Watershed Runoff. Procedia Engineering, 154, 868-876.

    Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, et al. Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 2007; 57(10):823–33.

    Olivieri F, Di Perna C, D’Orazio M, Olivieri L, Neila J. Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a mediterranean coastal climate. Energy Build 2013; 63:1–14.

    Pandey, S., Hindoliya, D. A., & Mod, R. (2012). Experimental investigation on green roofs over buildings. International Journal of Low-Carbon Technologies, 8(1), 37-42.

    Park, D., Jang, S., & Roesner, L. A. (2014). Evaluation of multi‐use stormwater detention basins for improved urban watershed management. Hydrological Processes, 28(3), 1104-1113.

    Park, S. Y., Lee, K. W., Park, I. H., & Ha, S. R. (2008). Effect of the aggregation level of surface runoff fields and sewer network for a SWMM simulation. Desalination, 226(1-3), 328-337.

    Perez G, Rincon L, Vila A, Gonzalez J, Cabeza LF. Green vertical systems for buildings as passive systems for energy savings. Appl Energy 2011; 88(12):4854–9.

    Perrin, C., Milburn, L., Szpir, L., Hunt, W., Bruce, S., McLendon, R. ... & Fisher, H. (2009). Low impact development: a guidebook for North Carolina (AG-716). NC Cooperative Extension Service, NC State University.

    Qin, H. P., Li, Z. X., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, 577-585.

    Roehr, D., & Kong, Y. (2010). Stormwater runoff reduction achieved by green roofs: comparing SWMM method to TR-55 method. In Low Impact Development 2010: Redefining Water in the City (pp. 1012-1021).

    Rosenzweig C, Solecki WD, Parshall L, Chopping M, Pope G, Goldberg R. Characterizing the urban heat island in current and future climates in New Jersey. Environ Hazards 2005; 6(1):51–62.

    Rowe DB, Getter KL, Durhman AK. Effect of green roof media depth on Crassulacean plant succession over seven years. Landscape Urban Plan 2012; 104(3–4):310–9.

    Rowe, D.B., 2011. Green roofs as a means of pollution abatement. Environ. Pollut. 159 (8–9):2100–2110.

    Sailor DJ. A green roof model for building energy simulation programs. Energy Build 2008; 40:1466–78.
    Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703.

    Sarrat C, Lemonsu A, Masson V, Guedalia D. Impact of urban heat island on regional atmospheric pollution. Atmos Environ 2006; 40:1743–58.

    Schubert, J., Sanders, B., Smith, M., & Wright, N. (2008). Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding. Advances In Water Resources, 31(12), 1603-1621.

    Shafique, M., & Kim, R. (2015). Low impact development practices: a review of current research and recommendations for future directions. Ecological Chemistry and Engineering S, 22(4), 543-563.

    Spala A, Bagiorgas HS, Assimakopoulos MN, Kalavrouziotisa J, Matthopoulos D, Mihalakakou G. On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renewable Energy 2008; 33:173–7.
    Spolek, G., (2008). Performance Monitoring of Three Ecoroofs in Portland, Oregon. Urban Ecosystem, 11:349- 359.

    Takebayashi H, Moriyama M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build Environ 2007;42(8):2971–9.

    U.S Environmental Protection Agency (USEPA), 2000. Low Impact Development (LID) A Literature Review. U.S Environmental Protection Agency, Washington, D.C.

    US EPA. (2017). What is Green Infrastructure? US EPA. Retrieved 6 November 2017, https://www.epa.gov/green-infrastructure/what-green-infrastructure#raingardens.

    Van Renterghem T, Botteldooren D. In situ measurements of sound propagating over extensive green roofs. Build Environ 2011; 46:729–38.

    VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J Environ Qual 2005; 34:1036–44.

    Vijayaraghavan KU, Joshi M, Balasubramanian R. A field study to evaluate runoff quality from green roofs. Water Res 2012; 46:1337–45.

    Voyde, E., Fassman, E., Simcock, R., & Wells, J. (2010). Quantifying evapotranspiration rates for New Zealand green roofs. Journal of hydrologic engineering, 15(6), 395-403.

    Wong NH, Cheong DKW, Yan H, Soh J, Ong CL, Sia A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build 2003;35:353–64.

    Xie, H., Chang, N. B., Daranpob, A., & Prado, D. (2010). Assessing the long-term urban heat island in San Antonio, Texas based on moderate resolution imaging spectroradiometer/Aqua data. Journal of Applied Remote Sensing, 4(1), 043508.

    Yao, L., Wei, W., & Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases?. Ecological Indicators, 60, 893-905.

    Zhang X, Shen L, Tam VWY, Lee WWY. Barriers to implement extensive green roof systems: a Hong Kong study. Renew Sustain Energy Rev 2012;16(1):314–9.

    Zhao M, Srebric J. Assessment of green roof performance for sustainable buildings under winter weather conditions. J Central South Univ 2012;19(3):639–44.

    Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16(3), 195-231.

    下載圖示
    QR CODE