簡易檢索 / 詳目顯示

研究生: 林泓宇
論文名稱: 含鎳超氧化物歧化酶擬態化合物之合成
Synthesis of Mimics for Nickel Superoxide Dismutase
指導教授: 李位仁
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 59
中文關鍵詞: 鎳錯合物含鎳超氧化物歧化酶擬態化合物
英文關鍵詞: Ni Complexs, NiSOD, Mimics
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.059.2018.B05
論文種類: 學術論文
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究承接本實驗室所開發出的鎳超氧岐化酶擬態化合物2,6-bis(((S)-2-(diphenyl-hydroxymethyl)-1pyrrolidinyl)methyl)pyridine (H2BDPP)系列配基,將苯環區進行修飾得到H2BDP2-dioP。此配基在進行去質子化後與[Ni(CH3CN)6](ClO4)2反應得到的二價錯合物Ni(BDP2-dioP),可跟氧化劑反應得到三價鎳的EPR光譜,從UV-vis光譜上也可以看到此三價鎳錯合物與超氧化鉀反應還原成二價NiBDP2-dioP的過程。除了如同其他NiBDPP系列錯合物一般有形成鎳三價錯合物的特性。在不破壞配位中心的條件下,Ni(BDP2-dioP)可以直接進行官能基轉換形成醛基修飾鎳二價錯合物NiBDPCHOP。基於醛類易氧化還原與跟其他官能基縮合等特點,提供Ni(BDPCHOP)進一步進行官能基修飾,和接到胜肽鏈上合成人工酵素的潛力

    Based on the ligand 2,6-bis(((S)-2-(diphenyl-hydroxymethyl)-1-pyrrolidinyl)methyl)pyridine (H2BDPP) previously synthesized in our lab, this work has focused on studying that how to change a functonal group to another on the ligand in the mimics of NiSOD. Therefore, we have designed and synthsized a protected ligand H2BDP2-dioP. After deprotonating the ligands and reacting with [Ni(CH3CN)6](ClO4)2, the complexe Ni(BDP2-dioP) (1) have been prepared. Complex 1 can be oxided by FcPF6 to [Ni(BDP2-dioP)](PF6) (3), which has been demonstrated by the EPR diagrams to NiIII species. The electron absorption spectroscopy and X-ray crystallography indicate that reaction of 3 with KO2 produce original complexes 1 without deprotection of dioxolane group. The dioxolane group of complex 1 is stable unless it has been deprotected by FeCl3 to Ni(BDPCHOP) (2), without side reaction and demetalation.

    中文摘要 Ι 英文摘要 IΙ 圖索引 III 表索引 V 附錄索引 VI 第一章 緒論 第一節 含鎳超氧化物歧化酶之介紹與文獻探討 1 第二節 含鎳超氧化物歧化酶擬態化合物之文獻探討 7 第三節 研究動機與目的 11 第二章 實驗部分 第一節 實驗儀器、藥品及條件 12 第二節 配位基的合成與鑑定 18 第三節 錯合物的合成與鑑定 23 第四節 錯合物與超氧化鉀的反應 26 第三章 結果與討論 第一節 鎳金屬錯合物之循環伏安法比較 27 第二節 鎳金屬錯合物之結構比較 28 第三節 鎳金屬錯合物的溶液光譜探討 31 第四節 鎳錯合物與KO2之反應性 38 第四章 結論與展望 42 參考文獻 43 附錄 45

    1.Che, M.; Wang, R.; Li, X.; Wang, H.-Y. and Zheng, X. S. Drug discovery today, 2016, 21(1), 143-149.
    2.McCord, J. M. and Fridovich, I. J. Biol. Chem., 1969, 244(22), 6049-6055.
    3.Keele, B. B.; McCord, J. and Fridovich, I. J. Biol. Chem., 1970, 245(22), 6176-6181.
    4.Yost, F. J. and Fridovich, I. J. Biol. Chem., 1973, 248(14), 4905-4908.
    5.Youn, H.-D.; Kim, E.-J.; Roe, J.-H.; Hah, Y. C. and Kang, S.-O. Biochem. J, 1996, 318(3), 889-896.
    6.Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A. and Getzoff, E. D. Biochemistry, 2004, 43(25), 8038-8047.
    7.Lee, W. Z.; Chiang, C. W.; Lin, T. H. and Kuo, T. S. Chem. Eur. J., 2012, 18(1), 50-53.
    8.Herbst, R. W.; Guce, A.; Bryngelson, P. A.; Higgins, K. A.; Ryan, K. C.; Cabelli, D. E.; Garman, S. C. and Maroney, M. J. Biochemistry, 2009, 48(15), 3354-3369.
    9.Sheng, Y.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A.-F.; Teixeira, M. and Valentine, J. S. Chem. Rev, 2014, 114(7), 3854-3918.
    10.Shearer, J. and Long, L. M. Inorg. Chem., 2006, 45(6), 2358-2360.
    11.Shearer, J.; Peck, K. L.; Schmitt, J. C. and Neupane, K. P. J. Am. Chem. Soc., 2014, 136(45), 16009-16022.
    12.Shearer, J. and Zhao, N. Inorg. Chem., 2006, 45(24), 9637-9639.
    13.Mathrubootham, V.; Thomas, J.; Staples, R.; McCraken, J.; Shearer, J. and Hegg, E. L. Inorg. Chem., 2010, 49(12), 5393-5406.
    14.Broering, E. P.; Truong, P. T.; Gale, E. M. and Harrop, T. C. Biochemistry, 2013, 52(1), 4-18.
    15.Nakane, D.; Wasada-Tsutsui, Y.; Funahashi, Y.; Hatanaka, T.; Ozawa, T. and Masuda, H. Inorg. Chem., 2014, 53(13), 6512-6523.
    16.Truong, P. T.; Gale, E. M.; Dzul, S. P.; Stemmler, T. L. and Harrop, T. C. Inorg. Chem., 2017, 56(14), 7761-7780.

    無法下載圖示 本全文未授權公開
    QR CODE