簡易檢索 / 詳目顯示

研究生: 張舒畬
Chang, Shu-Yu
論文名稱: 小GTPase Rab37對Formosanin C誘導之細胞自噬在肺癌細胞中的角色
The role of small GTPase Rab37 in Formosanin C-induced autophagy in lung cancer cells
指導教授: 蘇純立
Su, Chun-Li
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 肺癌Formosanin C細胞自噬Rab37ATG7Ras/MEK/ERKp62
英文關鍵詞: lung cancer, Formosanin C, autophagy, Rab37, ATG7, Ras/MEK/ERK, p62
DOI URL: http://doi.org/10.6345/NTNU201900866
論文種類: 學術論文
相關次數: 點閱:67下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌已經是台灣多年來死亡率第一名的癌症。轉移是治療肺癌最重要挑戰。中草藥重樓皂苷萃取物Formosanin C(FC)被發現可以藉由誘導降解型細胞自噬以及透過抑制組織金屬蛋白酶(MMPs)來降低肺癌轉移。降解型細胞自噬為細胞分解胞內物質以維持細胞能量平衡的方式。在肺癌細胞,人類小型GTPase Rab37增加金屬蛋白酶組織抑制劑(TIMP1)透過「分泌型細胞自噬」,降低MMP9的分泌以抑制肺癌轉移。本研究發現FC能夠(1)毒殺肺癌細胞CL1-5,(2)提高肺癌細胞的細胞自噬作用,其路徑與提高ATG7和Ras/MEK/ERK路徑的表現有關,(3)增加p62來抑制肺癌細胞的爬行。然而,在肺癌治療上,FC是否輔助化療藥物以發揮肺癌細胞致死的效果還有待更多證據釐清。

    Lung cancer has been the leading cause of cancer death in Taiwan for many years. Metastasis is a tricky challenge for lung cancer treatment. Formosanin C (FC), extracted from Chinese herbal saponin Rhizoma Paridis saponin (RPS), was found to have anti-tumor ability through inducing degradative autophagy and inhibiting pulmonary metastasis via repressing of matrix metalloproteinases (MMPs). Degradative autophagy degrades intracellular substances to maintain cell energy homeostasis. Human small GTPase Rab37 increases tissue inhibitor of metalloproteinase 1 (TIMP1) and reduces pulmonary metastasis through “secretory autophagy” in lung cancer cells. In the present studies, FC (1) inhibited CL1-5 lung cancer cell viability, (2) stimulated autophagy via upregulating ATG7 and Ras/MEK/ERK pathway, and (3) inhibited the cell migration through upregulating p62. However, whether FC can assist chemotherapy for lung cancer or not need much more research.

    第一章 緒論 p. 1 第一節 肺癌 p. 1 一、肺癌的流行與發生 p. 1 二、肺癌治療 p. 2 第二節 細胞自噬 p. 3 一、降解型細胞自噬(Degradative autophagy) p. 3 二、分泌型細胞自噬(Secretory autophagy) p. 4 三、肺癌轉移與細胞自噬 p. 5 第三節 台灣蚤休(Formosanin C,FC) p. 5 第二章 研究目的 p. 8 第三章 材料與方法 p. 10 第一節 實驗藥品與試劑 p. 10 第二節 儀器與實驗耗材 p. 12 第三節 實驗方法 p. 16 一、細胞培養、繼代、冷凍保存、解凍、計數 p. 16 二、藥物配製 p. 19 三、細胞存活率分析 (Cell viability analysis) p. 19 四、細胞自噬比例分析 p. 21 五、西方墨點法 p. 22 六、考馬斯亮藍染色法 p. 29 七、傷口癒合法(Wound healing assay) p. 30 八、統計分析 p. 30 第四章 結果 p. 31 第一節 FC的細胞毒殺能力 p. 31 第二節 FC引起CL1-5細胞自噬 p. 32 第三節 FC抑制CL1-5細胞爬行 p. 36 第五章 討論 p. 39 第六章 結論 p. 44 第七章 參考資料 p. 45 第八章 附錄 p. 52

    財團法人台灣必安研究所。民國108年6月18日,取自
    http://www.brion.org.tw/。
    台灣行政院衛生福利部國民健康署105年癌症登記報告。民國108
    年6月18日,取自
    https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=10227。
    Akio, K., Yukiko K., Yoshinori, O., Tamotsu, Y. (2001). Beclin–phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2(4), 330–5.
    Amin, M. B., Edge, S., Greene, F., Byrd, D. R., Brookland, R. K., Washington, M. K., et al. (2017). American Joint Committee on Cancer. Lung. AJCC Cancer Staging Manual. 8th ed. Springer, 431–456.
    Asati, V., Mahapatra D. K., Bharti, S. K. (2016). PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. 109, 314–41.
    Backer, J. M. (2018). The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 410(1):1-17.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A.(2018). Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 68(6), 394–424.
    Chen, J. C., Hsieh, M. J., Chen, C. J., Lin, J. T., Lo Y. S., Chuang Y. C., et al. (2016). Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of Akt and mitogen-activated protein kinase pathways in vitro and in vivo. Oncotarget. 7(43), 70276–89.
    Chu, Y. -W., Yang, P.-C. Yang, S.-C. Shyu, Y.-C. Hendrix, M. J. C. Wu, R. and Wu, C.-W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol. 17:353–360.
    Crazzolara, R., Cisterne, A., Thien, M., Hewson, J., Baraz, R., Bradstock, K. F., et al. (2009). Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood.
    113(14):3297–306.
    Esteban, A. O., Andrea, L. K. (2016). Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio Protoc. 6(21), e1984.
    Fu, L. L., Cheng, Y., Liu, B. (2013). Beclin-1: Autophagic regulator and therapeutic target in cancer. Int. J. Biochem. Cell B. 45, 921–4.
    Hao, H., Xia, G., Wang, C., Zhong, F., Liu, L., Zhang, D. (2017). miR-106a suppresses tumor cells death in colorectal cancer through targeting ATG7. Med Mol Morphol. 50(2):76–85.
    He, D. X., Li, G. H., Gu, X. T., Zhang, L., Mao, A. Q. Wei, J. et al. (2015). A new agent developed by biotransformation of polyphyllin VII inhibits chemoresistance in breast cancer. Oncotarget. 7(22), 31814–24.
    He, H., Zheng, L., Sun, Y. P., Zhang, G. W., Yue, Z. G. (2014). Steroidal Saponins from Paris polyphylla Suppress Adhesion, Migration and Invasion of Human Lung Cancer A549 Cells Via Down-Regulating MMP-2 and MMP-9. Asian Pac J Cancer Prev. 15(24), 10911–16.
    Hosseini, A., Ghorbani, A. (2015). Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna. J Phytomed. 5 (2): 84–97.
    Høyer-Hansen, M., Bastholm, L., Mathiasen, IS, Elling, F., Ja¨a¨ttela, M. (2005). Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ. 12, 1297–1309.
    Hsieh, M. J., Chien, S. Y., Lin, J. T., Yang, S. F., Chen, M. K. (2016). Polyphyllin G induces apoptosis and autophagy cell death in human oral cancer cells. Phytomedicine. 23, 1545–54.
    Isei, T., Takashi, U., Eiki, K. LC3 and Autophagy. (2008). Autophagosome and Phagosome. 445, 77–88.
    Jonathan, M. B. (2008). The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17.
    Lee, J. C., Su, C. L., Chen, L. L., Won, S. J. (2009). Formosanin C-induced apoptosis requires activation of caspase-2 and change of mitochondrial membrane potential. Cancer Sci. 100(3), 503–13.
    Levy, J. M. M., Towers, C. G., Thorburn, A. (2017). Targeting Autophagy in Cancer. Nat. Rev. Cancer. 17(9), 528–42.
    Li, M., Liu, J., Li, S., Feng, Y., Yi, F., Wang, L., et al. (2019). Autophagy-related 7 modulates tumor progression in triple-negative breast cancer. Lab Invest.
    Li, S. S., Xu, L. Z., Zhou, W., Yao, S., Wang, C. L., Xia, J. L., et al. (2017). p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis. Carcinogenesis. 38(11), 1092–103.
    Lin, Y., Chen, Y., Wang, S., Ma, J., Peng, Y., Yuan, X., et al. (2019). Plumbagin induces autophagy and apoptosis of SMMC-7721 cells in vitro and in vivo. J Cell Biochem. 120(6):9820–830.
    Lin, Z., Liu, Y. T., Li, F. Y., Wu, J. J., Zhang, G. Y., Wang, Y., et al. (2015). Anti-lung Cancer Effects of Polyphyllin VI and VII Potentially Correlate with Apoptosis In Vitro and In Vivo. Phytother. Res. 29,
    1568–76.
    Liu, J., Xia, H., Kim, M., Xu, L., Li, Y., Zhang, L., et al. (2011). Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 147(1):223–34.
    Malik, S. A., Orhon, I., Morselli, E., Criollo, A., Shen, S., Mariño, G., et al. (2011). BH3 mimetics activate multiple pro-autophagic pathways. Oncogene. 30, 3918–29.
    Man, S., Gao, W., Zhang, Y., Liu, Z., Yan, L., Huang, L., et al. (2011). Formosanin C-inhibited pulmonary metastasis through repression of matrix metalloproteinases on mouse lung adenocarcinoma. Cancer Biol Ther., 11(6), 592–98.
    Miller, A. B., Hoogstraten, B., Staquet, M., Winkler, A. (1981). Reporting Results of Cancer Treatment. Cancer. 1(47), 207–14.
    Ponpuak, M., Mandell, M. A., Kimura, T., Chauhan, S., Cleyrat, C., Deretic, V. (2015). Secretory autophagy. Curr Opin Cell Biol. 35:106–16.
    Roy, B., Pattanaik, A. K., Das, J., Bhutia, S. K., Behera, B., Singha, P., et al. (2014). Role of PI3K/Akt/mTOR and MEK/ERK pathway in Concanavalin A induced autophagy in HeLa cells. Chem-Bio Interact.
    Shi, X. P., Zh, M., Kang, Y., Yang T. F., Chen, X., Zhang, Y. M. (2018). Wnt/β-catenin signaling pathway is involved in regulating the migration by an effective natural compound brucine in LoVo cells. Phytomedicine. 46, 85–92.
    Shigeomi, S. (2018). Biological Roles of Alternative Autophagy. Mol. Cells. 41(1), 50–54.
    Sooro, M. A., Zhang, N., Zhang, P,. (2018). Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. Int. J. Cancer. 143(9), 2116–25.
    Sun, Q., Fan, W. L., Zhong, Q. (2009). Regulation of Beclin 1 in autophagy. Autophagy. 5(5), 713–16.
    Tsai, C. H., Cheng, H. C., Wang, Y. S., Lin, P., Jen, J. Kuo, I. Y., et al. (2014). Nat. Commun. Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. 5:4804.
    Vicencio, J. M., Ortiz, C., Criollo, A., Jones, A. W., Kepp, O., Galluzzi, L., et al. (2009). The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ. 16(7):1006–17.
    Wang, J. L., Cassandra, G., Ma, H. Z., Gao, P., Francis, J. H., Kan, Q. C., et al. (2018).Expression and role of autophagy-associated p62 (SQSTM1) in multidrugresistant ovarian cancer. Gynecologic Oncology. 150(1), 143–50.
    Wienecke, R., Fackler, I., Linsenmaier, U., Mayer, K., Licht, T., Kretzler, M. (2006). Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am J Kidney Dis. 48: e27–
    9.
    Wu, J., Li, W., Ning, J., Yu, W., Rao, T., Cheng, F. (2019). Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther. 12:495–508.
    Wu, R. T., Chiang, H. C., Fu W. C., Chien, K. Y., Chung, Y. M., Horng, L. Y. (1990). Formosanin-C, an immunomodulator with antitumor activity. Int. J. Inorg. (12)7, 777–86.
    Yan, X. Y., Zhong, X. R., Yu, S. H., Zhang, L. C., Liu, Y. N. Zhang, Y. et al. (2019). p62 aggregates mediated Caspase 8 activation is responsible for progression of ovarian cancer. J. Cell Mol. Med. 23(6), 4030–42.
    Yang, C. M., Ji, S., Li, Y., Fu, L. Y., Jiang, T., Meng, F. D. (2017).β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma. Oncotargets Ther. 10, 711–24.
    Yu, L., Chen, Y., Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 14(2), 207–15.
    Yun, C. W., Lee, S. H. (2018). The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 19, 3466.
    Zappa, C., Mousa S. A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 5(3): 288–300.
    Zeng, R. X., Zhang, Y. B., Fan, Y., Wu, G. L. (2014). p62/SQSTM1 is involved in caspase-8 associated cell death induced by proteasome inhibitor MG132 in U87MG cells. Cell Biol. Int. 38(10), 1221–6.
    Zhang, C., Jia, X., Wang, K., Bao, J. Li, P., Chen, M. et al. (2016). Polyphyllin VII Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/Akt/mTOR Pathway in HepG2 Cells. PLoS One. 11(1), e0147405.
    Zheng, W., Xie, W. W., Yin, D. Y., Luo, R., Liu M., Guo, F. J. (2019). ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling. J. Cell Commun. Signal. 17, 42.
    Zhu, J. L., Huang, G., Hua, X. H., Li, Y., Yan, H. Y, Che, X., et al. (2019). CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells.
    Oncogene. 38, 3301–15.

    下載圖示
    QR CODE