簡易檢索 / 詳目顯示

研究生: 鍾譯德
Chung, Yi-De
論文名稱: 直接生長大面積石墨烯作為電流擴散層應用於深紫外光發光二極體
Direct Formation of Large-Area Graphene as Transparent Conductive Electrodes Applied to Deep Ultraviolet Light Emitting Diodes
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 石墨烯直接成長電漿輔助式化學氣相沉積氧化鎳深紫外光發光二極體
英文關鍵詞: directly growth, graphene, PECVD, NiO, UVCLED
DOI URL: http://doi.org/10.6345/NTNU201900420
論文種類: 學術論文
相關次數: 點閱:57下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(graphene)為一種二維材料,由碳原子排列形成六角晶格結構,其具備多種特性,如低片電阻、高載子遷移率、良好之熱導性、機械性與高光穿透度等,其中於紫外光波段具高穿透度,因此為一相當具潛力之材料,可應用於深紫外光發光二極體上之電流擴散層。然而,石墨烯與深紫外光發光二極體最上層之p型磊晶材料之功函數差太大,此介面間存在蕭特基位障之高接觸電阻率,為石墨烯應用於深紫外光發光二極體上之一大障礙。
    為降低石墨烯與發光二極體介面間之接觸電阻率,本實驗中提出藉由原子層氣相沉積法(Atomic Layer Deposition;ALD),沉積功函數介於石墨烯與深紫外光發光二極體最上層之p型磊晶材料中間之氧化鎳作為石墨烯與發光二極體間之緩衝層,以降低此介面間之蕭特基位障,減少接觸電阻率之問題。本實驗中成長石墨烯製程之部分,乃藉由電漿輔助式化學氣相沉積法,以鎳薄膜作為金屬催化劑,直接生長大面積石墨烯於目標基板,其與傳統化學氣相沉積法成長石墨烯相比,可大幅降低製程溫度與省去轉印之步驟,增添量產之可能性。最後,於深紫外光發光二極體之p型氮化鎵磊晶層,生長約十五層厚度之石墨烯,且因加入氧化鎳作為緩衝層之結構,測得接觸電阻ρc為1.8×10-2 Ω-cm2,且於280 nm波段之透光率仍有約50%。

    Graphene is a two-dimensional material that is arranged by carbon atoms to form a hexagonal lattice structure with various properties such as low sheet resistance, high carrier mobility, good thermal conductivity, mechanical properties and high transmittance etc., which has high transmittance in the ultraviolet region, is therefore a potential material apply on UVCLED as the transparent conductivity electrode. However, the work function difference between the graphene and the p-type epitaxial material of the uppermost layer of the deep ultraviolet light emitting diode is too large, and there is a high contact resistivity of the Schottky barrier between the interfaces. This high contact resistivity between graphene and p-type layer of the UVCLED, which is a major obstacle for graphene to be applied to the UVCLED.
    In order to reduce the contact resistivity between the graphene and the light-emitting diode interface, this experiment proposes that NiO thin film which the work function is between graphene and deep ultraviolet light emitting diode acts as a buffer layer by Atomic Layer Deposition (ALD). Nickel oxide acts as a buffer layer between graphene and the light-emitting diode to reduce the Schottky barrier between the interfaces and reduce the contact resistivity. In this experiment, the part of the growing graphene process is a plasma-enhanced chemical vapor deposition method using a nickel film as a metal catalyst to directly grow large-area graphene on a target substrate. Compared with the conventional process of chemical vapor deposition method, significantly reducing the process temperature and the step of eliminating the need for a transfer, increase the possibility of mass production. Finally, in the deep ultraviolet light emitting diode p-type gallium nitride epitaxial layer, about fifteen layers of graphene are grown, and nickel oxide is added as a buffer layer structure, and the contact resistance ρc is 1.8×10-2 Ω-cm2, and the transmittance at 280 nm is still about 50%.

    致謝 Ⅰ 摘要 ⅡI 第1章 緒論 1 1.1 研究動機 1 1.2 GRAPHENE 發展歷史 3 1.3 GRAPHENE之基本特性 4 1.4 GRAPHENE之製備方式 8 1.5 發光二極體(LIGHT EMITTING DIODE;LED) 17 1.5.1 發光二極體發展回顧 18 1.5.2 發光二極體發光原理 19 1.5.3 藍光發光二極體 20 1.5.4 紫外光發光二極體 22 1.6 GRAPHENE應用於深紫外光發光二極體 23 1.7 文獻回顧 28 第2章 實驗樣品製備流程與儀器介紹 38 2.1 藉電漿輔助式化學氣相沉積之方式生長石墨烯 38 2.2 石墨烯/氧化鎳透明電流擴散層 47 2.3 電子束蒸鍍系統沉積鎳薄膜 52 2.4 量測儀器介紹 53 第3章 實驗結果與討論 60 3.1 石墨烯之特性量測 60 3.2 石墨烯/氧化鎳作為電流擴散層之特性量測 68 3.3 直接成長大面積石墨烯於P-GAN及其接觸電性量測 71 3.4 夾層石墨烯之驗證 74 第4章 結論 85 參考資料 86

    參考文獻
    [1] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices”, Applied Physics Letters 74 (26), 0003-6951 (1999)

    [2] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics 4, 611 - 622 (2010)

    [3] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh & A. A. Sokol, “Band alignment of rutile and anatase TiO2”, Nature Materials 12, 798–801 (2013)

    [4] Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, P. Kim, “Tuning the graphene work function by electric field effect”, Nano Letters, 9, 10,3430-3434 (2009)

    [5] S. Chandramohan, J. H. Kang, B. D. Ryu, J. H. Yang, S. Kim, H. Kim, J. B. Park, T. Y. Kim, B. J. Cho, E.-K. Suh, C. H. Hong, “Impact of interlayer processing conditions on the performance of GaN light-emitting diode with specific NiOx/graphene electrode”, Applied Materials & Interfaces 5, 958-964 (2013)

    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306 (5696), 666-669 (2004)

    [7] E. Y Andrei, G. Li, X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport”, Reports On Progress In Physics 75 (2012)

    [8] M. O. Goerbig, J. N. Fuchs, G. Montambaux, F. Pi´echon, “Massless Dirac fermions in the quasi-2D organic material α-(BEDT-TTF) 2I3 under pressure”, [Online]. Available: https://www.equipes.lps.u-psud.fr/GOERBIG/Utrecht0809.pdf

    [9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science 320 (5881), 1308-1308 (2008)

    [10] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Letters 8 (3), 902-907 (2008)

    [11] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321 (5887), 385-388 (2008)

    [12] K. S. Sivudu, Y. Mahajan, “Mass production of high quality graphene: An analysis of worldwide patents”, Nanotech Insights (2012), Available: http://www.nanowerk.com/spotlight/
    spotid=25744.php#ixzz1zDLJKv1i

    [13] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, “Graphene based materials: past, present and future”, Progress in Materials Science, 56, 1178–1271(2011)

    [14] www.xincailiao.com/news/news_detail.aspx?id=17515

    [15] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science ,312 (5777), 1191-1196 (2006)

    [16] W. Norimatsu, M. Kusunoki, “Formation process of graphene on SiC (0001)”, Physica E: Low-dimensional systems and nanostructures, 42 (4), 691–694 (2010)

    [17] X. Jia, J. Campos-Delgado, M. Terrones, V. Meuniere, M. S. Dresselhaus, “Graphene edges: a review of their fabrication and characterization”, Nanoscale, 3, 86 (2011)

    [18] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters 93, 113103 (2008)

    [19] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324 (5932), 1312-1314 (2009)

    [20] http://www.wunan.com.tw/www2/download/preview/5D91.PDF

    [21] https://en.wikipedia.org/wiki/Light-emitting_diode

    [22] http://www.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf

    [23] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN multiquantum well light-emitting diodes”, IEEE Journal of Selected Topics in Quantum Electronics 8 (4), 1077-260X (2002)

    [24] http://www.golsen.jp/en/ultraviolet/kindofu.html

    [25] R. H. Horng, B. R. Wu, C. H. Tien, S. L. Ou, M. H. Yang, H. C. Kuo, and D. S. Wuu, “Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrate”, Optic Express 22 (1), A179-A187 (2014)

    [26] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei1, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters 93, 113103 (2008)

    [27] T. Kato, R. Hatakeyama, “Direct growth of doping-density controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD”, ACS Nano, 6 (10), 8508–8515(2012)

    [28] L. Guo, Z. Zhang, H. Sun, D. Dai, J. Cui, M. Li, Y. Xu, M. Xu, Y. Du, N. Jiang, F. Huang, C. T. Lin, “Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD”, Carbon, 129, 456−461 (2018)

    [29] B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes”, Optics Express 18 (22), 23030-23034 (2010)

    [30] Y. Zhang, X. Li, L. Wang, X. Yi, D. Wu, H. Zhu, G. Wang, “Enhance light emission of GaN-based diodes with a NiOx/graphene hybrid electrode”, Nanoscale, 4, 5852–5855 (2012)

    [31] http://www.dahyoung.com/thinktank_article.php?id=30

    [32] http://slideplayer.com/slide/10797197/

    [33] 莫定山(2007),“Raman 光譜原理及應用”, available : http:// labguide.com.tw/user/w016267551/uploads/1246937317.pdf

    [34] http://bwtek.com/raman-theory-of-raman-scattering/

    [35] http://cc.ee.nchu.edu.tw/~stchang/course/Four-point%20probe%20tester.pdf

    [36] https://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-TEM/FE-TEM010.pdf

    [37] Y. S. Kim, K. Joo, S.-K. Jerng, J. H. Lee, D. Moon, J. Kim, E. Yoon, S.-H. Chun, “Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis”, ACS Nano, 8 (3),2230-2236 (2014)

    下載圖示
    QR CODE