簡易檢索 / 詳目顯示

研究生: 胡竣泓
Hu, Chun-Hung
論文名稱: 具線上放電銳化技術之晶粒分割系統開發與矽晶圓基板晶粒分割研究
Design development of a die separation system with in-situ w-EDD and study of die separation on silicon wafer substrate
指導教授: 陳順同
Chen, Shun-Tong
鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 189
中文關鍵詞: 線上放電銳化溝崩比類脆性研削模式晶粒分割
英文關鍵詞: In-situ w-EDD, KCR(Kerf Chipping Ratio), Brittle-like regime grinding, die separation
DOI URL: http://doi.org/10.6345/NTNU202000108
論文種類: 學術論文
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一「具線上放電銳化技術之晶粒分割系統」,並應用於矽晶圓基板晶粒分割研究。傳統電鑄鑽石輪刀,鑽石顆粒含量低,且基材剛性較低,填塞後便須直接拋棄處理,導致刀具成本高。本研究嘗試以含硼聚晶鑽石輪刀取代傳統電鑄鑽石輪刀,聚晶鑽石鑽石含量高達95%以上,且剛性高,可提高鑽石輪刀使用壽命。為避免鑽石輪刀於晶粒分割期間,發生填塞,本研究提出一種線上放電銳化的方法,藉由所設計的「線上放電銳化機構」與「脈衝寬度調變放電電源」,開發出線上放電銳化技術,鑽石輪刀在不拆卸情況下,可於短時間內,完成線上銳化工作。脈衝寬度調變放電電源可輸出高頻、高峰值且窄脈衝寬度的放電波形,可使鑽石輪刀表面快速形成高密度火花熔蝕坑(屑袋),並裸露出銳利的鑽石切刃。此外,以脈衝寬度調變電源進行線上放電銳化,鑽石輪刀亦可獲得薄化效果及降低輪刀表面的石墨化層。實驗結果顯示,線上放電銳化技術能快速實現刃厚30 μm、刃長400 μm,長寬比達13:1的聚晶鑽石輪刀,表面具高密度且分佈均勻的鑽石切刃與屑袋。為比較晶粒分割實驗的切割道品質,本研究提出「溝崩比」,以便採用「類脆性研削」模式,以較快的進給率和類脆性研削深度,進行晶粒分割,符合商用切割道的容許崩裂量及減少加工所耗時間。實驗結果證實,經線上放電銳化後的聚晶鑽石輪刀,著實可改善傳統電鑄鑽石輪刀切割晶圓所發生的崩裂、蛇行與歪斜等問題。研究也藉由「智能化研削力感測機制」對矽晶圓基板進行10×10陣列的晶粒分割驗證,發現晶圓正面及背面之溝崩比,分別達3.26及1.87,優於商用的溝崩比(1.34)(溝崩比愈大,溝緣崩裂量愈少),且切割道具高筆直度,晶粒邊壁垂直平整,對半導體產業有實質幫助,深具商業化價值。

    This study presents the development of a die separation system with an in-situ w-EDD (Electro discharge dressing) technology and study of die separation on silicon wafer substrate. Traditional electroformed diamond wheel tool has a low content of diamond abrasives and low rigidity of the substrate, which must be directly discarded after clogging leading to a high cost of tool. In this study, a BD-PCD (Boron-doped Polycrystalline Composite Diamond) in which possesses a content of diamond abrasive more than 95% and high rigidity is employed to instead of the traditional electroformed diamond wheel tool to improve the tool lifetime. To avoid clogging happened during working, an in-situ discharge dressing technology by which combines the designed "in-situ dressing mechanism" with the "PWM (Pulse-Width Modulation) power source" is developed. The diamond tool can be in-situ dressed in a short time without unloading. The PWM power source readily generates a current train with high-frequency, high-peak and shot-pulse time, which facilitates quickly form a high density spark erosion crater (chip-pocket) on the surface of the diamond wheel and expose the sharp cutting edge. In addition, a thin diamond wheel tool with lower graphitization layer can also be readily obtained. Experimental results show that the developed in-situ discharge dressing technology can quickly finish a diamond wheel tool with a thickness of 30 μm, a length of 400 μm and an aspect ratio of 13: 1. A high density and uniformly distributed diamond cutting edges and chip pockets has been revealed on the wheel surface. To compare the kerf quality, A KCR (Kerf Chipping Ratio) is proposed to perform a die separation at a faster feed-rate and brittle-like grinding depth under a brittle-like regime grinding, which meets the allowable chipping of commercial scribe line and reduces processing time. Experimental results confirm that the chipping, wavy cutting and slant cutting of the traditional electroformed diamond wheel can be improved by using the dressed BD-PCD wheel tool. By applying the mechanism of intellectualized grinding force feedback, a die separation with an array of 10×10 on silicon wafer substrate is verified, it was found that the KCR on the front and back of the wafer reached 3.26 and 1.87, respectively, which were better than the commercial KCR (the larger the KCR, the smaller the chipping at groove edge). Moreover, a scribe line with high-straightness and -wall verticality can be achieved, which is helpful in the semiconductor industry and great commercial value.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 ix 圖目錄 xii 符號說明 xviii 第一章 緒論 1 1.1 前言 1 1.2 文獻探討 2 1.3 研究動機 12 1.4 研究目的 13 1.5 研究方法 14 第二章 實驗原理 17 2.1 矽晶圓基板材料特性 17 2.2 硬脆材料研削原理與應用 22 2.3 放電加工技術原理與應用 33 2.4 晶粒分割伺服系統原理及回饋控制 40 2.5 智能化晶粒分割研削力感測及回饋機制 41 第三章 實驗所需設備 43 3.1 CNC立式加工中心機 43 3.2 CNC線切割放電加工機 43 3.3 放電鑽孔加工機 44 3.4 高速主軸及其控制器 45 3.5 高精度旋轉分度平台 46 3.6 微型直流馬達 47 3.7 實驗用量測儀器 48 3.8 實驗用材料 51 第四章 實驗方法 56 4.1 具線上銳化技術之晶粒分割系統設計與開發 58 4.2 含硼聚晶鑽石輪刀設計與開發 72 4.3 含硼聚晶鑽石輪刀放電削正與銳化實驗 79 第五章 矽晶圓基板晶粒分割實驗 88 5.1 晶粒分割實驗 88 5.2 類脆性研削模式加工實驗 116 5.3 含硼聚晶鑽石輪刀表面銳化實驗 122 5.4 晶粒切割道品質改善之探討 146 5.5 智能化研削力實驗 155 第六章 晶粒分割驗證 161 6.1 晶粒分割實驗驗證 161 第七章 結論與未來展望 169 7.1 結論 169 7.2 研究成果 170 7.3 研究貢獻 171 7.4 未來展望 172 參考文獻 174 附錄A 高同軸度錐度心軸設計圖 182 附錄B 各軸於1秒內不同轉數下的平台位置回饋誤差 183 附錄C 各軸於1秒內不同轉數下的平台位置回饋誤差(同軸) 188

    1.WSTS,工研院ISTI, SIP, 2018產業綜覽半導體現況, https://www.sipo.org.tw/
    2.經濟部,2018,產業經濟統計簡訊,https://www.moea.gov.tw/
    3.楊啟榮,2018,微機電系統原理與應用課程講義,國立臺灣師範大學機電工程學系。
    4.林志良、林谷鴻,2009,晶圓切割製程的穩健設計-六標準差與田口實驗設計的應用,工程科技與教育學刊,第六卷,第二期,pp.213-225.
    5.李明逵,2007,矽元件與積體電路製程,全華圖書股份有限公司。
    6.東京精密,切割機,https://www.accretech.jp/。
    7.Disco,切割機,https://www.disco.co.jp/
    8.HAMAMATSU, Stealth dicing engines,https://www.hamamatsu.com/jp/
    9.ADT,切割機,https://www.adt-co.com/
    10.J. Burghartz, 2010. Ultra-thin chip technology and applications. pp. 45-52.
    11.Dicso, 2017. Total solutions for thin and tiny dies with high die strength and for thinning WLCSP and eWLBwafers, https://www.disco.co.jp/.
    12.A. Kiyoshi, 2010. Panasonic’s Plasma Dicing Technology. SUSS MicroTec, pp. 4-7.
    13.M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi, K. Fukumitsu, 2007. Advanced Dicing Technology for Semiconductor Wafer—Stealth Dicing. IEEE Transactions on Semiconductor Manufacturing, vol. 20, pp. 259-265.
    14.W. H. Teh, D. S. Boning, R. E. Welsch, 2015. Multi-Strata Stealth Dicing Before Grinding for Singulation-Defects Elimination and Die Strength Enhancement: Experiment and Simulation. IEEE Transactions on Semiconductor Manufacturing, vol. 28, pp. 408-423.
    15.C. Morgan, R. R. Vallance, E. Marsh, 2004. Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining. Journal of micromechanics and microengineering, vol. 14, pp. 1687-1692.
    16.S. Sano, W. Pan, K. Suzuki, M. Iwai, T. Uematsu, 2007. Development of a fine grade PCD wheel for Precision and micro grinding using an ED-truing. Asia Electrical Machining Symposium.
    17.K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, 2009. Development of new PCD made up of boron goped diamond particles and its machinability by EDM. Advanced Materials Research, vol. 76-78, pp. 684-689.
    18.張智賢,2011,桌上型裝主軸超精微CNC工具機開發與細胞鏡檢模仁製作研究,國立臺灣師範大學機電工程學研究所,碩士論文。
    19.連家顥,2015,智能化對稱高速主軸研磨機開發與LED碳化鎢探針快速研削研究,國立臺灣師範大學機電工程學研究所,碩士論文。
    20.劉傳璽、陳進來,2006,半導體元件物理與製程理論與實務,五南出版社,pp.10-11.
    21.T. Leung, W. Lee, X. Lu, 1998. Diamond turning of silicon substrates in ductile-regime. vol. 73, pp. 42-48.
    22.F. Shimura, 2012. Semiconductor silicon crystal technology, San Diego: Academic Press, pp.32-33.
    23.徐樹楨,1993,晶體之結構與性質,渤海堂文化公司印行。
    24.C. P. Chen, M. H. Leipold, 1980. Fracture toughness of silicon. pp. 469-472.
    25.甄萬財,2006,砂輪划片機划切硬脆材料的工藝研究,華中科技大學,碩士論文。
    26.J. Czochralski, 1918. Ein neues verfahren zur messung der kristallisationsgeschwindigkeit der metalle. vol. 92, pp. 219-221.
    27.M. Komperød, B. Lie, 2010. Empirical Modeling of Heating Element Power for the Czochralski Crystallization Process, pp.19-34.
    28.WIKIPEDIA, 2015. Wafer (electronics), https://en.wikipedia.org/wiki
    29.吳國梁,2010,磨工實用技術手冊第2版,江蘇科學技術出版社,pp.84-88.
    30.庄司克雄,2004,超精密加工と非球面加工,NTS,pp.7-11.
    31.M. F. Ashby, 1999. Materials selection in mechanical design, 2 ed., pp.133-136.
    32.W. Lortz, 1979. A model of the cutting mechanism in grinding. vol. 53, pp. 115-128.
    33.S. T. Chen, Y. C. Lai, 2014. A hybrid process of raining co-deposition and rotary wire spark erosion in the development of a custom CBN tool for making a biochip injection mold. Journal of Materials Processing Technology, vol. 214, pp. 2784-2795.
    34.庄司克雄, 1999. 研削加工の軌跡. vol. 65, pp. 31-36.
    35.P. N. Blake, R. O. Scattergood, 1990. Ductile‐regime machining of germanium and silicon. Journal of the American ceramic society, vol. 73, pp. 949-957.
    36.H. Young, H. T. Liao, H. Y. Huang, 2007. Novel method to investigate the critical depth of cut of ground silicon wafer. Journal of materials processing technology, vol. 182, pp. 157-162.
    37.T. Nakasuji, S. Kodera, S. Hara, H. Matsunaga, N. Ikawa, S. Shimada, 1990. Diamond turning of brittle materials for optical components. CIRP annals, vol. 39, pp. 89-92.
    38.K. Soffa, 2012. Blades and Services for Advanced Material Application, pp.7-8. https://www.kns.com/
    39.C. Sommer, 2000. Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124.
    40.S. T. Chen, C. H. Chen, 2015. A novel power source for high-precision, highly efficient micro w-EDM. Journal of Micromechanics and Microengineering, vol. 25, p. 075027.
    41.J. Fleischer, T. Masuzawa, J. Schmidt, M. Knoll, 2004. New applications for micro-EDM. Journal of Materials Processing Technology, vol. 149, pp. 246-249.
    42.J. A. McGeough, 1988. Advanced methods of machining, Springer Science & Business Media, pp.128-129.
    43.陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學機電工程學系研究所,碩士論文。
    44.S. T. Chen, H. Y. Yang, C. W. Du, 2009. Study of an ultrafine w-EDM technique. Journal of micromechanics and microengineering, vol. 19, p. 115033.
    45.S. T. Chen, 2007. A high-efficiency approach for fabricating mass micro holes by batch micro EDM. Journal of micromechanics microengineering, vol. 17, p. 1961.
    46.齋藤長男,1979,放電加工のしくみと100%活用法,三菱電機(株),pp.40-67.
    47.J. H. Chen, G. Van Tendeloo, 1999. Microstructure of tough polycrystalline natural diamond. Microscopy, vol. 48, pp. 121-129.
    48.V. Blank, B. Kulnitskiy, I. Perezhogin, 2009. Structural peculiarities of carbon onions, formed by four different methods: Onions and diamonds, alternative products of graphite high-pressure treatment. Scripta materialia, vol. 60, pp. 407-410.
    49.陳順同,2016,超精密加工課程講義,國立臺灣師範大學機電工程學系。
    50.S. T. Chen, C. H. Chang, 2012. Study on Thinning of a Boron-Doped Polycrystalline Diamond Wheel-Tool by Micro Rotary W-EDM Approach. Applied mechanics and materials, vol. 217, pp. 2167-2170.
    51.T. Masuzawa, M. Fujino, K. Kobayashi, T. Suzuki, N. Kinoshita, 1985. Wire electro-discharge grinding for micro-machining. CIRP Annals, vol. 34, pp. 431-434.
    52.Aerotech, 2016. Controller Configuration, A3200 Help (5.05.003), A3200 Software-Based Machine Controller, http://www.aerotech.com/
    53.台中精機,CNC 立式加工中心機,https://www.victortaichung.com/
    54.慶鴻機電工業股份有限公司,2008,CNC線切割放電加工機保養手冊。
    55.施教競,2007,完整放電鑽孔機操作手冊,嘉昇機電工業股份有限公司。
    56.NAKANISHI, 2011, iSpeed3, pp.23-25.
    57.MISUMI,2015,FA工廠自動化用機械標準零件,pp.1-2046.
    58.FAULHABER,微型直流馬達,http://www.faulhaber.com/
    59.Tektronix,混合訊號示波器,http://www.tek.com
    60.漢磊精密科技有限公司,非接觸影像量測儀OMM,http://www.aixon.com.tw/
    61.JEOLUSA, Scanning Elextron Microscope, http://www.jeolusa.com/
    62.OLYMPUS,3D測量雷射共焦顯微鏡,http://www.olympus-ims.com
    63.JASCO, Laser Raman Spectrometer (NRS-4100), http://jascoinc.com/
    64.FACT江信有限公司,BD-PCD,http://www.factdiamond.com/
    65.S. T. Chen, C. H. Chang, 2013. Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel. Journal of Materials Processing Technology, vol. 213, pp. 740-751.
    66.元祥金屬工業股份有限公司,黃銅線,http://www.yhm.com.tw
    67.CRYSTRAN, 2012. Silicon (Si), https://www.crystran.co.uk/
    68.東洋技術有限公司,2016,紫外線切割膠帶,https://www.toyo-adtec.com.tw/
    69.昇茂金屬股份有限公司,SKD61熱模鋼,http://www.sheng-maw.com.tw
    70.炬鋒特殊鋼股份有限公司,SKD61工具鋼,https://www.jfs-steel.com/zh-TW/index.html
    71.Aerotech, NT130XY Series Two-Axis XY Direct-Drive Nanopositioning Stages, ANT130L Series Single-Axis Linear Direct-Drive Nanopositioning Stages, https://www.aerotech.com/
    72.黃立文,2019,高頻等脈衝微放電電源開發應用於含硼聚晶鑽石陣列微結構線切割放電研究,國立臺灣師範大學機電工程學系研究所,碩士論文。
    73.O. Bishop, 2011. Electronics-Circuits and Systems, 4th ed., Elsevier Ltd., pp.31-38.
    74.S. T. Chen, C. H. Chen, 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high-melting point, -hardness and -resistance materials. Journal of Materials Processing Technology, vol. 240, pp. 370-381.
    75.K. Tseng, H. Lee, J. Chiu, D. Tien, Y. Kao, 2015. A study of EDM machine waveform monitoring and nano silver manufacturing process optimization. The 27th Chinese Control and Decision Conference, pp. 1497-1501.
    76.吳育儒,2012,含硼聚晶鑽石輪刀開發與繞射階梯光柵模仁製作研究,國立臺灣師範大學機電工程學系研究所,碩士論文。
    77.陳元裕,2018,中頻振動輔助研磨機開發與單晶鑽石陣列微溝磨削研究,國立臺灣師範大學機電工程學系研究所,碩士論文。
    78.W. Hsue, Y. Liao, 1999. A study of corner control strategy of wire-EDM based on quantitative MRR analysis. International journal of electrical machining, vol. 4, pp. 33-39.
    79.楊建剛,2007,旋轉機械振動分析與工程應用,中國電力出版社,pp.37-68.
    80.J. Lee, 1995. An analytical study of self-compensating dynamic balancer with damping fluid and ball. Shock and Vibration, vol. 2, pp. 59-67.
    81.S. Y. Luo, Z. W. Wang, 2008. Studies of chipping mechanisms for dicing silicon wafers. The International Journal of Advanced Manufacturing Technology, vol. 35, pp. 1206-1218.
    82.J. G. Wager, D. Y. Gu, 1991. Influence of Up-Grinding and Down-Grinding on the Contact Zone. CIRP Annals, vol. 40, pp. 323-326.
    83.S. T. Chen, C. H. Chen, C. H. Chang, 2019. Study of high-frequency microspark-erosion of boron-doped polycrystalline diamond. Diamond and Related Materials, vol. 94, pp. 155-161.
    84.E.C. Jameson, 2001. Electrical Discharge Machining. SME Publication, pp. 103-121.
    85.J. C. Rebelo, A. Morao Dias, D. Kremer, J. L. Lebrun, 1998. Influence of EDM pulse energy on the surface integrity of martensitic steels. Journal of Materials Processing Technology, vol. 84, pp. 90-96.
    86.M. Shabgard, S. N. B. Oliaei, M. Seyedzavvar, A. Najadebrahimi, 2011. Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. Journal of Mechanical Science and Technology, vol. 25, pp. 3173-3183.
    87.顏木田、莊宗仁,2003,線切割放電加工隅角粗加工軌跡補償策略之研究,國立臺灣大學台大工程學刊,pp.109-117.
    88.M. C. Shaw, 2005. Metal cutting principles. pp. 179-184.
    89.Y. Chen, L. C. Zhang, J. A. Arsecularatne, 2007. Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism. International Journal of Machine Tools and Manufacture, vol. 47, pp. 1615-1624.
    90.J. Hodkiewicz, T. Scientific, 2010. Characterizing carbon materials with Raman spectroscopy. application note, vol. 51946.
    91.J. X. Deng, H. Zhang, Z. Wu, A. H. Liu, 2011. Friction and wear behavior of polycrystalline diamond at temperatures up to 700°C. International Journal of Refractory Metals and Hard Materials, vol. 29, pp. 631-638.
    92.Disco, 2017. ZHRF, http://www.disco.co.jp/
    93.K. Venkatakrishnan, B. Tan, 2007. Thin silicon wafer dicing with a dual-focused laser beam. Journal of Micromechanics and Microengineering, vol. 17, p. 2505.

    無法下載圖示 電子全文延後公開
    2025/12/31
    QR CODE