簡易檢索 / 詳目顯示

研究生: 陳思穎
Chen, Si-Ying
論文名稱: 表面電漿共振效應在奈米金銀修飾二氧化矽球之光催化還原二氧化碳研究
Surface Plasmon Resonance Enhanced Photocatalytic Reduction of CO2 on the Gold/Silver Decorated Silica
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 局部表面電漿共振二氧化矽球金銀奈米粒子二氧化碳還原'光催化還原
英文關鍵詞: Localized Surface Plasmon Resonance, Silica spheres, Gold/Silver nanoparticles, CO2 reduction, Photocatalytic reduction
DOI URL: http://doi.org/10.6345/NTNU202001124
論文種類: 學術論文
相關次數: 點閱:83下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於大氣中的二氧化碳濃度持續升高,進而造成全球暖化和氣候變遷等問題,近年來科學家嘗試使用光催化或電催化等還原方法將二氧化碳轉變成可再利用的能源以解決大氣中二氧化碳過量的問題。本研究選用具有強表面電漿共振效應(LSPR)之金屬元素作為光催化的活性位點,例如金、銀等,進一步探討其對於二氧化碳的光催化還原反應效果。此外,金、銀等過渡金屬元素含有多電子的d軌域,可以幫助穩定CO雙鍵的中間態,提高多電子轉移的機會,進而產生各種多碳產物如乙醛、乙醇等。
    為了研究表面電漿共振效應對於光催化反應的影響同時增加有效的催化面積,本研究使用二氧化矽球做為基材,主要是利用Stöber溶膠凝膠法合成,並於其表面生長金銀奈米島狀結構。最後透過還原金屬離子的方式將金屬島狀結構生長於矽球上,改變生長液中所添加的金屬前驅物的量,可以調整島狀結構的間隙大小,並更進一步探討其與光催化還原二氧化碳的關係。最後將乘載好金銀奈米島的粉末樣品照射類太陽光源並連接氣相層析儀可以了解到產物生成速率以及光催化效率和二氧化碳還原產物種類。從結果可知,在長上適量銀的二氧化矽球對乙醇選擇性為54%,乙醛選擇性為34%,且光催化效率是最好為0.0485﹪,但隨著銀的負載量提升,光子效率降低導致還原效率降至0.0295﹪,而觀察到銀奈米島可幫助光催化二氧化碳產物乙醇與乙醛之選擇性提升,之後或許可以使用較大尺寸的矽球使銀島長得更加均勻,增加產物的產率。

    As the continuous increased concentration of carbon dioxide (CO2) in the atmosphere may cause the problems of global warming and climate change, recently, the reduction methods such as photocatalysis and electrocatalysis have been proposed to capture CO2 in the atmosphere by directly converting CO2 into renewable energy. Because the electrons in the d orbitals can help stabilize the intermediate state of the CO double bond, the usage of transition metal elements (such as Au and Ag) may increase the chance of multi-electron transfer to enhance the production of multi-carbon products (such as acetaldehyde and ethanol).
    In addition, metal elements with strong surface plasmon resonance (LSPR) effect can also improve the photocatalytic efficacy. In order to study the effect of surface plasmon resonance on the photocatalytic CO2 reduction, in this work, silica spheres were used as the substrate. In addition, the gold and silver nano-island structures grown on the surface of the silica spheres were used as the active sites. The silica spheres were synthesized by the Stöber sol-gel method, and the nano-island structures were grown on the silica spheres by a seed-mediated method. The gap distance of the nano-island structures can be controlled by adjusting the amount of the added metal precursor. For the photocatalytic CO2 reduction, the as-prepared samples were irradiated with a solar-like light source, and the products were collected by a gas chromatograph system to analyze the types of products, generation rate, and photocatalytic efficiency. According to the results, the samples with appropriate amount of silver showed the highest photocatalytic efficiency 0.0485 and selectivity for ethanol of 54﹪and acetaldehyde of 34﹪. Besides, the silver nano-islands can promote the selectivity of ethanol and acetaldehyde in photocatalytic reduction. However, the photon efficiency decreased with increasing silver loading. Our results demonstrated the plasmon enhanced CO2 reduction with the usage of nano-islands structures. In addition, it maybe can use large size of silica spheres to make silver nano-island grow more uniformly and increase the yield of products.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1全球暖化 1 1-2溫室效應 2 1-2-1溫室氣體 3 1-2-2溫室氣體的主要來源 4 1-3二氧化碳處理方法 5 1-4光觸媒 6 1-5光催化反應 7 1-6表面電漿共振效應對光催化反應之影響 8 第二章.文獻回顧與動機 9 2-1二氧化矽球 9 2-2奈米金屬粒子其光學性質和應用 12 2-3 核殼結構 16 2-4二氧化矽球表面改質 17 2-5二氧化矽球/金屬奈米粒子之合成 19 2-6光觸媒 20 2-7光催化二氧化碳還原 25 第三章.實驗方法 26 3-1藥品 26 3-2實驗設備儀器介紹 27 3-2-1恆溫循環水槽 27 3-2-2高速冷凍型離心機 28 3-2-3紫外-可見光吸收光譜儀 29 3-2-4界面電位分析儀 30 3-2-5掃描式電子顯微鏡 31 3-2-6穿透式電子顯微鏡 32 3-2-7氣相層析儀 32 3-3實驗架構與流程 33 3-4單分散二氧化矽球合成 34 3-5二氧化矽球表面改質 34 3-6二氧化矽球/奈米金種之合成 34 3-7二氧化矽球/奈米銀之合成 35 3-8光催化二氧化碳還原之應用 35 第四章 結果與討論 36 4-1單分散二氧化矽球 36 4-2二氧化矽球表面改質 39 4-3合成二氧化矽球/奈米金種 40 4-4合成二氧化矽球/奈米金種/奈米銀粒子 40 4-5 UV圖譜 42 4-6 ICP定量 42 4-7光催化還原二氧化碳 43 第五章 結論與未來展望 48 參考文獻 49

    1.What is climate change? A really simple guide. BBC NEWS, 2020.05.05(Science & Environment).
    2.Climate Change 2007:What is the Greenhouse Effect? IPCC, 2007.
    3.Greenhouse gas concentrations in atmosphere reach yet another high. WORLD METEOROLOGICAL ORGANIZATION, 2019.11.25(Greenhouse gases).
    4.Microsoft aiming to be carbon negative by 2030. 2020,02,02.
    5.Global Emissions. C2ES, 2017.
    6.溫室氣體與氣候變化. 交通部中央氣象局.
    7.財團法人中技社.經濟日報社, 二氧化碳捕捉與封存技術發展. 2013.
    8.林佳璋、劉文宗, 二氧化碳回收技術. 工業技術研究院化學工業研究所.
    9.Galadima, A. and O. Muraza, Catalytic thermal conversion of CO2 into fuels: Perspective and challenges. Renewable and Sustainable Energy Reviews, 2019. 115.
    10.KeangMeng, T., Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. ELSEVIER, 2017.
    11.Cuéllar-Franca, R.M. and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 2015. 9: p. 82-102.
    12.張志玲, 原來光觸媒是這麼回事. 科技大觀園, 2020.
    13.Xiang, Q., B. Cheng, and J. Yu, Graphene-Based Photocatalysts for Solar-Fuel Generation. Angew Chem Int Ed Engl, 2015. 54(39): p. 11350-66.
    14.Shirsath, S.E., et al., Ferrites Obtained by Sol-Gel Method, in Handbook of Sol-Gel Science and Technology. 2018. p. 695-735.
    15.Ha, S.-W., M.N. Weitzmann, and G.R. Beck, Dental and Skeletal Applications of Silica-Based Nanomaterials, in Nanobiomaterials in Clinical Dentistry. 2013. p. 69-91.
    16.Yu, B., et al., Synthesis and modification of monodisperse silica microspheres for UPLC separation of C60 and C70. Analytical Methods, 2016. 8(4): p. 919-924.
    17.Jana, J., M. Ganguly, and T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances, 2016. 6(89): p. 86174-86211.
    18.Unser, S., et al., Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors (Basel), 2015. 15(7): p. 15684-716.
    19.Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 2011. 10(12): p. 911-21.
    20.Tabakman, S.M., et al., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun, 2011. 2: p. 466.
    21.Zhang, B., et al., Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chem. Sci., 2014. 5(10): p. 4070-4075.
    22.Kulkarni, S.K., Nanoshell particles: synthesis, properties and applications. CURRENT SCIENCE, 2006.
    23.Nordlander, P., A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science, 2003.
    24.Jankiewicz, B.J., et al., Silica-metal core-shell nanostructures. Adv Colloid Interface Sci, 2012. 170(1-2): p. 28-47.
    25.Choma, J., et al., Preparation and properties of silica–gold core–shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 373(1-3): p. 167-171.
    26.Tabakman, S.M., et al., A new approach to solution-phase gold seeding for SERS substrates. Small, 2011. 7(4): p. 499-505.
    27.Alula, M.T., et al., Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchimica Acta, 2016. 184(1): p. 219-227.
    28.Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. ELSEVIER, 2004.
    29.洪世淇, 奈米科技應用的最前線:光觸媒.
    30.Pimentel, A., et al., Photocatalytic Activity of TiO2 Nanostructured Arrays Prepared by Microwave-Assisted Solvothermal Method, in Semiconductor Photocatalysis - Materials, Mechanisms and Applications. 2016.
    31.Dou, H., et al., Photocatalytic Degradation Kinetics of Gaseous Formaldehyde Flow Using TiO2 Nanowires. ACS Sustainable Chemistry & Engineering, 2019. 7(4): p. 4456-4465.
    32.Chen, K.-H., et al., Ag-Nanoparticle-Decorated SiO2Nanospheres Exhibiting Remarkable Plasmon-Mediated Photocatalytic Properties. The Journal of Physical Chemistry C, 2012. 116(35): p. 19039-19045.
    33.Chen, X., et al., Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem Int Ed Engl, 2008. 47(29): p. 5353-6.
    34.Ziashahabi, A., et al., The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci Rep, 2019. 9(1): p. 11839.
    35.Tahir, M., B. Tahir, and N.A.S. Amin, Gold-nanoparticle-modified TiO 2 nanowires for plasmon-enhanced photocatalytic CO 2 reduction with H 2 under visible light irradiation. Applied Surface Science, 2015. 356: p. 1289-1299.
    36.Tahir, M., et al., Photo-induced reduction of CO 2 to CO with hydrogen over plasmonic Ag-NPs/TiO 2 NWs core/shell hetero-junction under UV and visible light. Journal of CO2 Utilization, 2017. 18: p. 250-260.
    37.Tahir, M., B. Tahir, and N.A.S. Amin, Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Applied Catalysis B: Environmental, 2017. 204: p. 548-560.
    38.Chen, Q., et al., Photo-induced Au–Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A, 2019. 7(3): p. 1334-1340.

    下載圖示
    QR CODE