簡易檢索 / 詳目顯示

研究生: 李向
Lee, Shiang
論文名稱: 環內附加甲基吡啶碳氮異位紫質鐵{FeNO}7六配位一氧化氮錯合物研究
Six-coordinated {FeNO}7 iron-nitrosyl complex using N-confused porphyrin with an appended pyridine arm as a supporting ligand
指導教授: 洪政雄
Hung, Chen-Hsiung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
DOI URL: http://doi.org/10.6345/NTNU202000794
論文種類: 學術論文
相關次數: 點閱:35下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們根據文獻的方法,在未添加任何強鹼性的試劑下,成功的在鎳金屬碳氮異位紫質中的環內碳加上了甲基吡啶取代基,並透過簡單的色層管柱分析獲得純化的產物Ni(CTPP-CH2Py) (1),且此化合物也不會因為立體障礙的因素導致不穩定而降解。接著我們嘗試了不同濃度的鹽酸來脫除鎳金屬以獲得含有環內取代基的free base ligand: (CTPP-CH2Py)H2 (2),發現加入一毫升33%濃度鹽酸具有最佳的產率,也間接地證明環內碳的取代基是非常穩定的,不會因為強酸的加入而脫除;上述的兩種化合物皆完成了一系列的光譜分析並獲得其晶體結構。1H NMR光譜中,在Ni(CTPP-CH2Py) (1)與(CTPP-CH2Py)H2 (2)相比之下發現由於配位路易氏酸,逆磁鎳錯合物Ni(CTPP-CH2Py) (1)中較去金屬配位基為downfield。另外,在去金屬反應後所得(CTPP-CH2Py)H2 (2)中,少了金屬的鍵結也使外翻pyrrole ring偏離平均平面,碳氮異位紫質的芳香性降低、環電流降低故遮蔽效應降低。接下來我們在(CTPP-CH2Py)H2 (2)中與FeBr2反應,獲得了Fe(HCTPP-CH2Py)Br (3),並透過Fe(d20-HCTPP-CH2Py)Br的1H NMR光譜輔助了解此順磁化合物四個pyrrole ring 上之α-pyrrole及β-pyrrole氫原子訊號,也根據氫原子的化學位移推斷此化合物是屬於二價金屬鐵,與其他文獻類似順磁化合物相比之下,pyridine衍生基團的存在並不會使1H NMR上有太大的差異。透過了晶體的研究,Fe(HCTPP-CH2Py)Br (3)晶體是至今碳氮異位紫質環未出現過的堆積方式,為S型的方式堆積。最後,我們通過灌入一氧化氮氣體(NO),由一系列光譜鑑定、DFT理論計算及晶體探討中證實獲得了異位紫質中第一個以衍生臂形式鍵結中心金屬鐵且穩定的六配位產物{FeNO}7,Fe(CTPP-CH2Py)NO (4);其中,有趣的是在固態傅里葉轉換紅外光譜顯示了兩條一氧化氮(NO)吸收訊號分別為1660及1596 cm-1,而我們搭配了密度含泛理論計算(DFT Calculation)推測其為五配位及六配位一氧化氮ν(NO)的震動光譜訊號,因為軸配位pyridine的σ-donating造成trans-effect,N-O鍵結強度下降故六配位一氧化氮訊號為1596 cm-1,而此效應也被科學家認為是六配位{FeNO}n系統中主要影響Fe-NO、N-O鍵結鍵長之因子,且最後透過晶體的固態及液態IR光譜證實此化合物在溶劑中五、六配位具有一個平衡存在,也證實了理論計算的正確性。

    Without adding any strong alkaline reagent, we successfully appended a pyridine arm to the inner carbon of nickel N-confused porphyrin, and obtained the metal complex Ni(CTPP-CH2Py) (1). This nickel complex is air stable and can be purified through column chromatography. The desired free-base (CTPP-CH2Py)H2 (2) can then be isolated after demetallated by hydrochloric acid. 1H NMR spectroscopic studies revealed that, the proton signals of Ni( CTPP-CH2Py) (1) are more downfield shifted than free base due to nickel che-lation. The upfield-shifted protons signals for the β-pyrrolic protons on (CTPP-CH2Py)H2 (2) might be originated from the decreased ring current of free-base due to a more distorted porphyrin core in the absence of a central metal ion. Next, we used (CTPP-CH2Py)H2 (2) to react with FeBr2 to obtain Fe(HCTPP-CH2Py)Br (3). Compared with other paramagnetic iron(II) N-confused porphyrin complexs, the presence of pyridine does not cause a major difference on chemical shifts of 1H NMR. Examining the Fe(HCTPP-CH2Py)Br (3) crystal stacking, we identified an unprecedented S-type stacking linked by hydrogen bonding inter-actions. Finally, injecting nitric oxide gas into the Fe(HCTPP-CH2Py)Br (3), isolated a stable six-coordinated {FeNO}7 iron nitrosyl complex with an appended pyridine coordinated to the iron metal center, Fe(CTPP-CH2Py)NO (4). The compound 4 was characterized through a series of spectroscopic methods and DFT theoretical calculations including its crystal struc-ture. The Fourier-transform infrared spectroscopy (FTIR) shows two nitric oxide stretching frequencies at 1660 and 1596 cm-1. Combined with DFT calculation, we speculated that it is nitric oxide signals of five-coordinate and six-coordinated complex. The trans effect of σ-donating pyridine coordination would result a decreased N-O bond order and the 1596 cm-1 signal has been assigned as a signal from the six-coordinate iron complex.

    目錄 謝辭 I 摘要 II ABSTRACT IV 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1紫質及其衍生物 1 1-2異位紫質的合成及其衍生物 5 1-3異位紫質與碳紫質金屬錯合物 6 1-4 一氧化氮(NO)與異位紫質蛋白質 10 第二章 實驗部分 13 2-1實驗藥品及前置處理 13 2-2儀器設備 13 2-3 化合物的合成與鑑定 16 2-3-1起始物的製備 16 2-3-2 Ni(HCTPP) 16 2-3-2-1 Ni(d20-HCTPP) 16 2-3-3 Ni(CTPP-CH2Py) (1) 16 2-3-3-1 Ni(d20-CTPPCH2Py) (1a) 17 2-3-4 (CTPP-CH2Py)H2 (2) 17 2-3-4-1 (d20-CTPPCH2Py)H2 (2a) 18 2-3-5 Fe(HCTPP-CH2Py)Br(3) 18 2-3-5-1 Fe(d20-HCTPPCH2Py)Br (3a) 19 2-3-5 Fe(CTPP-CH2Py)NO (4) 19 2-3-5-1 Fe(d20-CTPPCH2Py)NO (4a) 20 第三章 結果與討論 21 3-1 NI(CTPP-CH2PY) (1)之合成、UV-VIS之電子吸收光譜、核磁共振光譜、質譜、晶體結構分析。 21 3-1-1 Ni(CTPP-CH2Py) (1)之合成 21 3-1-2 Ni(CTPP-CH2Py) (1)UV-Vis之電子吸收光譜 21 3-1-3 NiII(CTPP-CH2Py) (1)之核磁共振光譜 22 3-1-4 Ni(CTPP-CH2Py) (1)之Mass光譜 24 3-1-5 Ni(CH2Py-CTPP) (1)之晶體結構 25 3-2 (CTPP-CH2PY)H2 (2)之合成、UV-VIS之電子吸收光譜、核磁共振光譜、質譜、晶體結構分析。 32 3-2-1 (CTPP-CH2Py)H2 (2)之合成 32 3-2-2 (CTPP-CH2Py)H2 (2)之電子吸收光譜 32 3-2-3 (CTPP-CH2Py)H2 (2)之核磁共振光譜 33 3-2-4 (CTPP-CH2Py)H2 (2)之Mass光譜 37 3-2-5 (CTPP-CH2Py)H2 (2)之晶體結構 37 3-3 FE(HCTPP-CH2PY)BR (3)之合成、UV-VIS之電子吸收光譜、核磁共振光譜、質譜、氧化追蹤反應、晶體結構分析。 44 3-3-1 Fe(HCTPP-CH2Py)Br (3)之合成 44 3-3-2 Fe(HCTPP-CH2Py)Br (3)之電子吸收光譜 44 3-3-3 Fe(HCTPP-CH2Py)Br (3)之核磁共振光譜 45 3-3-4 Fe(HCTPP-CH2Py)Br (3)之Mass光譜 48 3-3-5 Fe(HCTPP-CH2Py)Br (3)之氧氣氧化反應追蹤結果 49 3-3-6 Fe(HCTPP-CH2Py)Br (3)之晶體結構 51 3-4 FE(CTPP-CH2PY)NO (4)之合成、UV-VIS之電子吸收光譜、核磁共振光譜、IR光譜、DFT理論計算、EPR光譜、晶體結構分析。 58 3-4-1 Fe(CTPP-CH2Py)NO (4)之合成 58 3-4-2 Fe(CTPP-CH2Py)NO (4)之Uv-vis電子吸收光譜 58 3-4-3 Fe(CTPP-CH2Py)NO (4)之核磁共振光譜 59 3-4-4 Fe(CTPP-CH2Py)NO (4)之質譜分析 60 3-4-5 Fe(CTPP-CH2Py)NO (4)之IR光譜分析 61 3-4-6 Fe(CTPP-CH2Py)NO (4)之DFT理論計算 63 3-4-7 Fe(CTPP-CH2Py)NO (4)之晶體結構 66 3-4-8 Fe(CTPP-CH2Py)NO (4)之EPR光譜 76 3-4-9 利用Evan’s Method測量Fe(CTPP-CH2Py)NO (4)之magnetic moment 77 第四章 結論 80 未來展望與工作 82 參考文獻 84

    1. (a) Milgrom, L. R., The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford University Press., USA 1997.; (b) Dolphin, D., The Porphyrins. Academic Press: New York 1998.
    2. Lehninger, A. L.; Nelson, D. L.; Cox, M. M., Prinzipien der Biochemie, Spektrum Akademischer Verlag, Berlin 1994.
    3. Jentzen, W.; Simpson, M. C.; Hobbs, J. D.; Song, X.; Ema, T.; Nelson, N. Y.; Med-fort, C. J.; Smith, K. M.; Veyrat, M.; Mazzanti, M.; Ramasseu, R.; Marchon, J.-C.; Takeuchi, T.; Goddard, W. A.; Shelnutt, J. A., J. Am. Chem. Soc., 1995, 117, 11085.
    4. Chan, S. I. Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 8505-8506.
    5. Gray, H. B.; Winkler, J. R. Chem. Phys. Lett., 2009, 483, 1-9.
    6. Collman, J. P. Acc. Chem. Res., 1977, 10, 265–272.
    7. Huang, X.; Groves, J. T. Chem. Rev., 2018, 118, 2491-2553.
    8. Rosenthal, J.; Pistorio, B. J.; Chng, L. L.; Nocera, D. G. J. Org. Chem., 2005, 70, 1885-1888.
    9. Scheidt, W. R. J. Porphyr. Phthalocyanines., 2008, 12, 979-992.
    10. Kadish, K. M.; Van Caemelbecke, E. J. Solid State Electrochem., 2003, 7, 254-258.
    11. Narayanan, S. J.; Sridevi, B.; Chandrashekar, T. K.; Vij, A.; Roy, R. J. Am. Chem. Soc., 1999, 121, 9053.
    12. Jonathan L., S.; Dong-Gyu, C.; Marcin, S.; Vincent, L.; Jacek, W.; Zin Seok Y.; Dongho, K.; J. Am. Chem. Soc., 2006, 128, 12640.
    13. Hung, C-H.; Lin, C-Y.; Linb, P-Y.; Chen, T-J. Tetrahedron Lett., 2004, 45, 129.
    14. Lash, T. D.; Hayes, M. J.; Spence, J. D.; Muckey, M. A.; Ferrence, G. M.; Szczepura, L. F. J. Org. Chem., 2002, 67, 4860.
    15. Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Glowiak, T. Angew. Chem., 1994, 106, 805-8
    16. Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Glowiak, T., Angew. Chem. Int. Ed., 1994, 33, 779.
    17. Furuta, H.; Asano, T.; Ogawa, T., J. Am. Chem. Soc., 1994, 116 (2), 767.
    18. Szterenberg, L.; Latos- Grażyński, L., Inorg. Chem., 1997, 36, 6287
    19. Furuta, H.; Maeda, H.; Osuka, A., Chem Comm., 2002, 1795
    20. Geier, G. R.; Haynes, D. M.; Lindsey, J. S., Org. Lett., 1999, 1, 1455.
    21. Furuta, H.; Ogawa, T.; Uwtoko, Y; Araki, K., Inorg. Chem., 1999, 38, 2676
    22. Furuta, H.; Maeda, H.; Osuka. A., J. Org. Chem., 2001, 66, 8563.
    23. Yan, J.; Takakusaki, M; Yang, Y.; Mori. S.; Zhang, B.; Feng, Y.; Masatoshilshida and Furuta, H., Chem Commun., 2014, 50, 14593-14596.
    24. Furuta, H.; Ishizuka, T.; Osuka, A.; Ogawa, T., J. Am. Chem. Soc., 1999, 121 (12), 2945-2946.
    25. Pushpan, S. K.; Srinivasan, A.; Anand, V. R. G.; Chandrashekar, T. K.; Subramanian, A.; Roy, R.; Sugiura, K.-i.; Sakata, Y., J. Org.Chem., 2001, 66 (1), 153-161.
    26. Furuta, H.; Maeda, H.; Osuka, A., J. Am. Chem. Soc., 2000, 122, 803.
    27. Rachlewicz, K.; Wang, S.-L.; Ko, J.-L.; Hung, C.-H.; Latos-Grażyński, L., J. Am. Chem.Soc., 2004, 126 (13), 4420-4431.
    28. Gouterman, M., J. Mol. Spectrosc., 1961, 6, 138.
    29. Nunro, O. Q.;Scheidt, W. R., Inorg. Chem., 1998, 37. 2308-2316.
    30. Ignarro, L. J.; Wood, K. S.; Wolin, M. S., Proc. Natl. Acad. Sci. U.S.A., 1982, 79 (9), 2870-2873.
    31. Ignarro, L. J., Biochem. Soc. Trans., 1992, 20 (2), 465-9.
    32. Grathwaite, J., Trends Neurosci., 1991, 14, 60.
    33. Hirio, Y.; Murad, F., J. Biol. Chem., 1991, 266, 3441.
    34. Stryer, L., Annu. Rev. Neurisci., 1986, 9, 87.
    35. Griffith, O. W.; Stuehr, D. J., Annu. Rev. Physiol., 1995, 57, 707.
    36. Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T., Nat. Rev. Drug Discov., 2008, 7, 156-167.
    37. Gladwin, M. T.; Grubina, R.; Doyle, M. P., Acc. Chem. Res. 2008, 42, 157-167.
    38. Wasser, I. M.; Simon de Vries; Moenne-Loccoz, P.; Schroder, I.; Karlin, K. D., Chem. Rev., 2002, 102, 1201.
    39. Perissinotti, L. L.; Marti, M. A.; Doctorovich, F.; Luque, F. J.; Estrin, D. A., Biochemistry., 2008, 47, 9793-9802.
    40. Enemark, J. H.; Feltham, R. D., Coord. Chem. Rev., 1974, 13, 339-406.
    41. Wyllie, G. R. A.; Scheidt, W. R., Chem. Rev., 2002, 102, 1067.
    42. McCleverty, J. A., Chem. Rev., 2004, 104, 403.
    43. Scheidt, W. R.; Mary, K. J., J. Am. Chem. Soc., 1998, 120, 9034
    44. Scheidt, W. R.; Mary, K. E., Acc. Chem. Res., 1999, 32, 350.
    45. Franz, K. J.; Lippard, S. J., J. Am. Chem. Soc., 1998, 120, 9034.
    46. Renner, M. W.; Fajer, F., Inorg. Chem., 2001, 6, 823.
    47. Chen, W.-C.; Hung, C.-H., Inorg. Chem., 2001, 40, 5070-5071.
    48. Rachlewicz, K.; Wang, S.-L.; Ko, J.-L.; Hung, C.-H.; Latos-Grażyński, L., J. Am.
    Chem. Soc., 2004, 126, 4420-4431.
    49. Chmielewski, P. J.; Latos-Grażyński, L.; Głowiak, T., J. Am. Chem. Soc., 1996, 118, 5690–5701.
    50. Xiao, Z.; Patrick, B. O.; Dolphin, D., Chem. Commun., 2002, (17), 1816-1817.
    51. Zabardasti, A., In Molecular interactions, Meghea, A., Ed. InTech: 2012; pp 49-78.
    52. Rachlewicz, K.; Gorzelańczyk, D.; Latos-Grażyński, L., Inorg. Chem., 2006, 45, 9742−9747.
    53. Rachlewicz, K.; Wang, S.-L.; Peng, C.-H.; Hung, C.-H.; Latos-Grażyński, L., Inorg. Chem., 2003, 42, 7348-7350.
    54. 荊偉民. 碳氮異位紫質鐵錯合物之亞硝酸鹽還原反應及其相關錯合物之電子組態研究. 國立臺灣師範大學. 2010
    55. Chen, W.-C.; Hung, C.-H., Inorg. Chem., 2001, 40, 5070.
    56. Hunt, A. P.; N. Lehnert., Acc. Chem. Res., 2015, 48, 2117-2125.
    67. Hunt, A. P.; N. Lehnert., Inorg. Chem., 2019, 58, 11317-11332.
    58. Magill, C. P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C., Inorg. Chem., 1994, 33, 1928-1933.
    59. Klose, A.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.; Re, N., J. Am. Chem. Soc., 1994, 116, 9123-9135.
    60. Scheidt, W. R.; Piciulo, P. L. J. Am. Chem. Soc. 1976, 98, 1913
    61. Scheidt, W. R.; Brinegar, A. C.; Ferro, E. B.; Kirner, J. F. J. Am. Chem. Soc. 1977, 99, 7315.
    62. Nasri, H.; Ellison, M. K.; Chen, S.; Hunyh, B. H.; Scheidt, W. R. J. Am. Chem. Soc. 1997, 119, 6274.
    63. Ching, W. M.; Chuang C. H.; Wu C. W.; Peng C. H.; Hung C. H. J. Am. Chem. Soc. 2009, 131, 23, 7952-7953
    64. Scheidt, W. R.; Duval, H. F.; Neal, T. J.; Ellison, M. K. J. Am. Chem. Soc. 2000, 122, 4651.
    65. Bohle, D. S.; Debrunner, P. G.; Fitzgerald. J.; Hansert, B.; Hung, C.- H.; Thomp-son, A. J. J. Chem. Soc., Chem. Commun. 1997, 91
    66. Scheidt, W. R.; Frisse, M. E., J. Am. Chem. Soc., 1975, 97, 17.
    67. Loots, L.; Barbour, L. J.; Tiekink, E. R. T.; Zukerman-Schpector, J., Eds. John Wiley & Sons: Chichester, UK, 2012. pp 109–124.
    68. Wyllie, G. R. A.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 2003, 42, 5722-5734
    69. Evans, D. F., J. Chem. Soc., 1959, 2003-2005.

    下載圖示
    QR CODE