簡易檢索 / 詳目顯示

研究生: 曾鉯茹
Tseng, Yi-Ju
論文名稱: 高濃度鋯之鐵電氧化鉿鋯極化反應及多階操作
Polarization Response and Multi-Level Operation for Ferroelectric HfZrO2 with High Zirconium Content
指導教授: 李敏鴻
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 氧化鉿鋯負電容電晶體鐵電記憶體金氧半場效電晶體多階操作
英文關鍵詞: NC-FETs, Ferroelectric-Memory,, HfZrO2, MOSFET, Multi-Level operation
DOI URL: http://doi.org/10.6345/NTNU202001550
論文種類: 學術論文
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來在半導體的領域中,鐵電材料是非常盛行及熱門的研究主題,而鐵電氧化鉿鋯(Hf1-xZrxO2, HZO)也已被廣泛的利用,本論文將選擇摻雜高濃度鋯之HZO作為鐵電電晶體的絕緣層材料,進行其特性的研究及應用。
    鐵電材料的遲滯現象(Hysteresis)具有雙穩態的特性,滿足負電容電壓放大(Negative capacitance, NC)和記憶體儲存信號的要求,本論文將以鐵電極化反應時間量測來驗證高濃度鋯之HZO鐵電電晶體的負電容效應,且將AFE(Anti-Ferroelectric)-HZO材料製作成金屬鐵電層金屬(Metal-Ferroelectric-Metal, MFM)電容結構及金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET),分別進行相關電性的研究。
    由於現今電晶體不斷微縮,VDD也隨之下降。透過使用具有不同功函數的上下電極材料在MFM中會產生內建偏壓讓Zr為90%之AFE原始遲滯曲線偏移並產生兩個穩定的非揮發性狀態達到降低功耗的效果。此外,透過打入脈衝電壓可將Zr為75%的FET分為四階狀態,等效的增加了記憶體晶片密度。於記憶體可靠度方面,Retention可以保持到104秒,Endurance則是可操作至106個週期。

    In the past decades, ferroelectric materials have attracted growing interest and have been extensively investigated to leverage state-of-the-art CMOS architectures. In this work, zirconium high concentration HfZrO2 as the gate insulator of FeFET is studied for its characteristics.
    The bi-stable state nature feature of hysteresis loops from ferroelectric materials satisfies the demands of storing signal for memory and voltage amplification concept for negative capacitance. The electrical properties of zirconium high concentration HfZrO2 applied on Metal-Ferroelectric-Metal (MFM) and Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) are demonstrated, respectively. In addition, negative capacitance effect is validated by Q-VFE of voltage transient response measurement.
    Due to the continuously scaling of transistors, VDD reduction has also accompany. By employing top and bottom electrodes with different work functions, a built-in bias is generated in MFM. This bias induced the original hysteresis loop shift of 90% Zr content AFE and enables two stable non-volatile states to meet power consumption reduced. Moreover, four-level states are achieved by 75% Zr content HZO FET when pulse voltage applying, and effectively increase the memory chip density. For reliability of memory operation, data retention up to 104s and endurance surpass 106 cycles both are obtained.

    第一章 緒論 1 1-1 鐵電材料簡介 1 1-2 鐵電材料的應用 4 1-3 論文架構 5 第二章 鐵電MFM負電容極化反應時間 7 2-1 簡介 7 2-2 鐵電MFM(Metal-Ferroelectric-Metal)的製程 9 2-3 量測設定及方式 10 2-3-1 量測機台介紹—Agilent B1530A 10 2-3-2 創建波形 12 2-4 負電容極化反應時間實驗結果 15 2-4-1 Vs-Time 15 2-4-2 Electric charge-VF 18 2-5 結果討論與分析 19 第三章 鐵電MFM上電極不同功函數材料之PV 22 3-1 簡介 22 3-2 上電極四種金屬之鐵電電晶體的製程 25 3-3 量測設定及方式 26 3-3-1 量測機台介紹—Radiant 26 3-3-2 遲滯曲線(P-E loop)測量 28 3-3-3 不同bias及V之PV量測設定 31 3-4 四種功函數材料之實驗結果 34 3-4-1 上電極高、低功函數材料模擬能帶圖及P-E loop結果 34 3-4-2 Pt之PE測量 37 3-4-3 Ni之PE測量 39 3-4-4 Ti之PE測量 41 3-4-5 Yb之PE測量 43 3-5 結果討論與分析 45 第四章 鐵電電晶體之多階操作 47 4-1 簡介 47 4-2 鐵電電晶體FET (Field-Effect Transistor)的製作 48 4-3 量測設定及方式 49 4-3-1 量測機台介紹—Agilent B1525A 49 4-3-2 創建模組 49 4-3-3 創建Endurance波形 54 4-3-4 創建Retention波形 54 4-4 電晶體之多階操作量測結果 55 4-4-1 多階操作之IDS-VGS 55 4-4-2 多階操作之Endurance 56 4-4-3 多皆操作之Retention 57 4-5 結果討論及分析 57 第五章 總結與未來發展 60 5-1 總結 60 5-2 未來發展 61 參考文獻 62

    [1] K. Ni, M. Jerry, J. A. Smith, and S. Datta, “A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs, ” in VLSI Technology Symp., 2018, pp. 131-132.
    [2] T. S. Bösckea, J. Müllerb, D. Bräuhausc, U. Schröderd, and U. Böttgerc, “Ferroelectricity in Hafnium Oxide: CMOS Compatible Ferroelectric Field Effect Transistors, ” in IEDM Tech. Dig., Dec. 2011, pp. 547-550.
    [3] T. Boescke, J. Heitmann, U. Schroder, “Integrated circuit with dielectric layer, ” US 7,709,359 B2, 2010 (Filing date 2007-09-05).
    [4] K. Ni, M. Jerry, J. A. Smith, and S. Datta, “A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs,” in VLSI Technology Symp., 2018, pp. 131-132.
    [5] T. S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger and T. Mikolajick, “Phase Transitions in Ferroelectric Silicon Doped Hafnium Oxide, ’’ Appl. Phys. Lett., vol. 99, 2011, Art. no. 112904.
    [6] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 Thin Films for Nonvolatile Memory Applications, ’’ Appl. Phys. Lett., vol. 99, 2011, Art. no. 112901.
    [7] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectricity in Yttrium-doped Hafnium Oxide, ’’ Appl. Phys. Lett., vol. 110, 2011, Art. no. 114113.
    [8] S. Müller, J. Müller, A. Singh, S. Riede, J. Sundqvist, U. Schroeder and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films, ’’ Advanced Functional Materials, vol. 22, no. 11, pp. 2412-2417, 2012.
    [9] T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. V. Elshocht and T. Mikolajick, “Strontium Doped Hafnium Oxide Thin Films: Wide Process Window for Ferroelectric Memories. ” European Solid-State Device Research Conference, Set. 2013, pp. 260-263.

    [10] A. G. Chernikova, D. S. Kuzmichev, D. V. Negrov, M. G. Kozodaev, S. N. Polyakov, and A. M. Markeev., “Ferroelectric Properties of Full Plasma-Enhanced ALD TiN/La:HfO2/TiN Stacks, ” Appl. Phys. Lett., vol. 108, 2016, Art. no. 242905.
    [11] S. Müller, H. Mulaosmanovic, S. Slesazeck, J. Müller, and T. Mikolajick, “CMOS Compatible Ferroelectric Devices for Beyond 1X nm Technology Nodes, ” in Solid State Device and Materials(SSDM), 2017, pp. 539-540.
    [12] T. S. Bösckea, J. Müllerb, D. Bräuhausc, U. Schröderd, and U. Böttgerc, “Ferroelectricity in Hafnium Oxide: CMOS Compatible Ferroelectric Field Effect Transistors, ” in IEDM, 2011, pp. 547-550.
    [13] P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Müller, “Ferroelectric Deep Trench Capacitors based on Al:HfO2 for 3D Nonvolatile Memory Applications, ” in International Memory Workshop (IMW), 2014, pp. 1-4.
    [14] C. H. Cheng and A. Chin, “Low-Leakage-Current DRAM-Like Memory Using a One-Transistor Ferroelectric MOSFET With a Hf-Based Gate Dielectric, ” Electron Device Letter, vol. 35, pp. 138-140, 2014.
    [15] C. H. Cheng and A. Chin, “Low-Voltage Steep Turn-on PMOSFET Using Ferroelectric High-k Gate Dielectric, ” IEEE Electron Device Letter, vol. 35, pp. 274-276, 2014.
    [16] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon,K. D. Kim, and C. S. Hwangn, “Toward a Multifunctional Monolithic Device Based on Pyroelectricity and the Electrocaloric Effect of Thin Antiferroelectric HfxZr1-xO2 Films, ” Nano Energy, vol. 12, pp. 131-140, 2015.
    [17] Y. C. Chiu, C. H. Cheng, C. Y. Chang, M. H. Lee, H. H. Hsuand, and S. S. Yen, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance, ” in VLSI Technology Symp., 2015, pp. 184-185.
    [18] S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, and M. Saitoh, “First Demonstration and Performance Improvement of Ferroelectric HfO2-Based Resistive Switch With Low Operation Current and Intrinsic Diode Property, ” in VLSI Technology Symp., 2016, pp. 978-979.

    [19] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel Ferroelectric FET based Synapse for Neuromorphic Systems, ” in VLSI Technology Symp., 2017, pp. 176-177.
    [20] R. Eskandari, X. Zhang, and L. M. Malkinski, “Polarization-Dependent Photovoltaic Effect in Ferroelectric-Semiconductor System, ” Applied Physics Letters, vol. 110, pp. 121105, 2017.
    [21] M. Dragoman, M. Aldrigo, M. Modreanu, and D. Dragoman, “Extraordinary Tunability of High-Frequency Devices Using Hf0.3Zr0.7O2 Ferroelectric at Very Low Applied Voltages, ” Applied Physics Letters, vol. 110, pp. 103104, 2017.
    [22] J. V. Houdt, “Memory Technology for the Terabit Era: from 2D to 3D, ” in VLSI Technology Symp., 2017, pp. 978-979.
    [23] S. W. Smith, A. R. Kitahara, M. A. Rodriguez, M. D. Henry, and M. T. Brumbach, and J. F. Ihlefeld, “Pyroelectric Response in Crystalline Hafnium Zirconium Oxide (Hf1-xZrxO2) Thin Films, ” Applied Physics Letters, vol. 110, pp. 072901, 2017.
    [24] F. Huang, Y. Wang, X. Liang, J. Qin, Y. Zhang, X. Yuan, Z. Wang, B. Peng,L. Deng, and Q. Liu, “HfO2-Based Highly Stable Radiation-Immune Ferroelectric Memory, ” IEEE Electron Device Letter, vol. 38, pp. 330-333, 2017.
    [25] A. Chen, “Nanoelectronic Device Research for beyond - CMOS Technologies, ” in “Emerging Technologies for the post 14nm Node Area, ” in IEDM short course, Dec. 8, 2012.
    [26] C. Israel, N. D. Mathur, J. F. Scott, “A One-Cent Room-Temperature Magnetoelectric Sensor, ” Nature Materials vol. 7, pp. 93-94, 2008.
    11
    [27] S. Salahuddin, and S. Datta, “Can the Subthreshold Swing in a Classical FET be Lowered Below 60 mV/decade, ” in IEDM Tech. Dig., Dec. 2008, pp. 693-696.

    [28] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” in IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [29] S. Salahuddin, and S. Datta, “Can the subthreshold swing in a classical FET be lowered below 60 mV/decade,” in IEDM Tech. Dig., Dec. 2008. pp. 693-696, 2008.
    [30] P. Sharma, J. Zhang, K. Ni, and S. Datta, “Time-Resolved Measurement of Negative Capacitance, ” IEEE Electron Device Letters, vol. 39, no. 2, pp. 272-275, 2018.
    [31] M. Hoffmann, B. Max, T. Mittmann, U. Schroeder, S. Slesazeck, and T. Mikolajick, “Demonstration of High-speed Hysteresis-free Negative Capacitance in Ferroelectric Hf0.5Zr0.5O2, ” in IEDM Tech. Dig., Dec. 2018, pp. 727-730.
    [32] M. Hoffmann, Franz P. G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck and T. Mikolajick, “Unveiling the Double-Well Energy Landscape in a Ferroelectric Layer, ” Nano Letters, vol. 565, pp. 463-467, 2019.
    [33] B1500A Semiconductor Device Analyzer user’s manual, pp. 1,4-2,32.
    [34] Agilent B1530A Waveform Generator/Fast Measurement Unit, pp. 1,5-2,12.
    [35] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, “Negative Capacitance in a Ferroelectric Capacitor, ” Nature Materials, vol. 14, pp. 182-186 , 2015.
    [36] A. I. Khan, M. Hoffmann, K. Chatterjee, Z. Lu, R. Xu, C. Serrao, S. Smith, L. W. Martin, C. Hu, R. Ramesh, and S. Salahuddin, “Differential Voltage Amplification from Ferroelectric Negative Capacitance, ” Appl. Phys. Lett., vol. 111, 2017, Art. no. 253501.
    [37] M. Hoffmann, A. I. Khan, C. Serrao, Z. Li, S. Salahuddin, M. Pešić, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Ferroelectric Negative Capacitance Domain Dynamics, ” Appl. Phys. Lett., vol. 123, 2018, Art. no. 184101.
    [38] 李明道, “各式記憶體簡介,” 國家奈米元件實驗室奈米通訊, vol. 22, no.4, pp. 2-6, 2015.
    [39] 李明道, “新式非揮發性記憶體之發展與挑戰,” 國家奈米元件實驗室奈米通訊, vol. 21, no. 3, pp. 9-14, 2014.
    [40] EET電子功成專輯,鐵電記憶體在新電子電能表中的應用 (民99年10月12日)。檢自https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800622969_628626_TA_24dbd3d4.HTM (July. 12, 2020)
    [41] M. Peši´, U. Schroeder, S. Slesazeck, and T. Mikolajick, “Comparative Study of Reliability of Ferroelectric and Anti-Ferroelectric Memories, ” IEEE Trans. Device Mater. Rel., vol. 18, no. 2, pp. 154-162, 2018.
    [42] Premier II Ferroelectric Test System Brochure, pp. 1-2.
    [43] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, “A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage, ” Technical Digest, International Electron Device Meeting (IEDM), pp. 665-668, San Francisco, Dec. 7-11, 2019.
    [44] M. H. Lee, K.-T. Chen, C.-Y. Liao, G.-Y. Siang, C. Lo, H.-Y. Chen, Y.-J. Tseng, C.-Y. Chueh, C. Chang, Y.-Y. Lin, Y.-J. Yang, F.-C. Hsieh, S. T. Chang, M.-H. Liao, K.-S. Li, and C. W. Liu, “Bi-directional Sub-60mV/dec, Hysteresis-Free, Reducing Onset Voltage and High Speed Response of Ferroelectric-AntiFerroelectric Hf0.25Zr0.75O2 Negative Capacitance FETs, ” in IEDM Tech. Dig., Dec. 2019, pp. 447-450.
    [45] S. M. SZE. (1985). Physics of Semiconductor Devices. America:John Wiley & Sons.
    [46] 施敏、李明逵(民102)。半導體元件物理與物理技術。新竹市:國立交通大學出版社。

    無法下載圖示 本全文未授權公開
    QR CODE