簡易檢索 / 詳目顯示

研究生: 謝振源
Hsieh, Chen-Yuan
論文名稱: 鐵/銥應變能與銀/石墨烯/鈷/銥異向能探討與磁性研究
Investigation of Fe/Ir strain energy and Ag/Graphene/Co/Ir magnetic anisotropy energy and related magnetic properties
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 面心立方應變能石墨烯異向能斯格明子
DOI URL: http://doi.org/10.6345/NTNU201900748
論文種類: 學術論文
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中英對照表 iii 摘要 v 第一章 序論 1 第二章 基本概念 11 2-1 物理氣相沉積 (physical vapor deposition, PVD) 13 2-2 化學氣相沉積 (chemical vapor deposition, CVD) 16 2-3 磁異向能 (magnetic anisotropy energy) 19 2-4 晶格結構 (lattice structure) 21 2-5 表面自由能 (surface free energy) 23 2-6 合金相圖 (alloy phase diagram) 25 第三章 實驗儀器及科學原理 32 3-1 樣品備製 32 3-1-1 樣品清理 32 3-1-2 鐵/銥系統的成長 33 3-1-3 銀/石墨烯/鈷/銥(111)系統的成長 34 3-2 分析儀器 36 3-2-1 歐傑電子能譜儀 (Auger electron spectroscopy, AES) 38 3-2-2 低能量電子繞射儀 (low-energy electron diffraction, LEED) 42 3-2-3 表面磁光柯爾效應 (surface magneto-optic Kerr effect, SMOKE) 47 第四章 結果與討論 52 4-1 鐵/銥系統應變能探討 52 4-1-1 磁性與結構 52 4-1-2 晶格參數轉換 56 4-1-3 應變能密度 58 4-1-4 總應變能 64 4-2 銀薄膜對石墨烯/鈷/銥(111)的影響 67 4-2-1 歐傑模擬 67 4-2-2 系統磁性 75 4-2-3 異向能計算 78 4-2-4 Dzyaloshinskii−Moriya Interaction計算 82 第五章 結論 87 附錄一 面心立方層距與晶格常數關係計算 89 附錄二 體心立方層距與晶格常數關係計算 91 附錄三 補充說明鈷在不同系統上的應變 93 參考資料 94

    [01] C.L. Lin, A. W. Wu, Y. C. Wang, Y. C. Tseng, and J. S. Tsay, Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives, Phys. Chem. Chem. Phys., 15(7), pp. 2360–2367 (2013).
    [02] J. Brona, R. Wasielewski, and A. Ciszewski, Ultrathin films of Cu on Ru(10-10): Flat bilayers and mesa islands, Appl. Surf. Sci., 258(24) pp. 9623–9628 (2012).
    [03] K. Leistner, N. Lange, J. Haenisch, S. Oswald, F. Scheiba, S. Faehler, H. Schloerb, and L. Schultz, Electrode processes and in situ magnetic measurements of FePt films in a LiPF6 based electrolyte, Electrochimica Acta, 81, pp. 330–337 (2012).
    [04] J. Geshev, A. Guendel, I. Zaharieva, and J. E. Schmidt, Edge atoms effects on the perpendicular anisotropy of ultrathin magnetic layers, Appl. Phys. Lett., 101(13), p. 132407 (2012).
    [05] D. Boettcher, A. Ernst, and J. Henk, Noncollinear magnetism in ultra-thin films with strong spin-orbit coupling from Ab initio, J. Nanosci. Nanotechnol.,12(9), pp. 7516–7519 (2012).
    [06] G. Bian, L. X. Zhang, Y. Liu, T. Miller, and T. C. Chiang, Illuminating the surface spin texture of the giant-rashba quantum-well system Bi/Ag(111) by circularly polarized photoemission, Phys. Rev. Lett., 108(18), p. 186403 (2012).
    [07] Y. J. Chen, C. C. Chang, H. Y. Ho, and J. S. Tsay, Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer, Thin Solid Films, 519(23), pp. 8343–8346 (2011).
    [08] C. S. Shern, J. S. Tsay, H. Y. Her, Y. E. Wu and R. H. Chen, Response and enhancement of surface magneto-optic Kerr effect for Co–Pt(111) ultrathin films and surface alloy, Surf. Sci. 429(1-3) pp. L497-L502 (1999).
    [09] A.Meyer, J. I. Flege, R. E. Rettew, S. D. Senanayake, T. Schmidt, F. M. Alamgir, and J. Falta, Ultrathin silver films on Ni(111), Phys. Rev. B, 82(8), p. 085424 (2010).
    [10] D. C. Fu, P. P. Huang, and U. Bach, Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition-correlation of nanostructure, catalytic activity and optical properties, Electrochimica Acta, 77, pp.121–127 (2012).
    [11] R. F. Zhang, J. Wang, I. J. Beyerlein, A. Misra, and T. C. Germann, Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces, ACTA Mater., 60(6–7), pp.2855–2865 (2012).
    [12] H.Y. Ho, Y.C. Lee, and J.S. Tsay, Depression of the Coercive Force via Oxygen Exposure of Ultrathin Fe/Pt(111) Films, IEEE Trans. Magn. 46(6), 1360 (2010).
    [13] C. H. T. Chang, W. H. Kuo, Y. C. Chang, J. S. Tsay and S. L. Yau, Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved, Sci. Rep., 7, 43700 (2017).
    [14] H. Y. Ho, C. C. Chang, H. H. Wu, Y. J. Chen and J.S. Tsay, Magnetic Properties of Ultrathin Fe/Ag/Fe Sandwich on Pt(111)。IEEE Trans. Magn., 47(10), p3901-3904 (2011).
    [15] Po-Yu Yen, Sih-Zih Chen, Hsin-Ling Tu, Heng-Liang Wu, Shueh-Lin Yau, and Jyh-Shen Tsay, Epitaxial Electrodeposition of Cobalt on a Pt(111) Electrode Covered with a Cu(111) Film, J. Phys. Chem. C, 115(48), 23802 (2011).
    [16] S. Yamaguchi, K. Morimoto, J. Fukuda, and H. Suzuki, Electrowetting-based pH- and biomolecule-responsive valves and pH filters, Biosens. Bioelectron., 24(7), pp.2171–2176 (2009).
    [17] W. H. Chen, S. C. Wang, Y. W. Tseng, D. C. Tsai, and J. S. Tsay, The formation of a surface alloy for Ag/Ir(111) ultrathin films, Surf. Sci. 605, 2045 (2011).
    [18] W. Y. Chan, D. C. Tsai, W. H. Chen, C. H. T. Chang, and J. S. Tsay, Enhancement of polar coercive force for annealed Co/Ir(111) ultrathin films, J. Korean Phys. Soc. 62(12), 1945 (2013).
    [19] J. S. Tsay, D. C. Tsai, C. H. T. Chang, and W. H. Chen, Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films, Thin Solid Films, 548, 475 (2013).
    [20] B. A. Hamad, J. M. Khalifeh, and C. Demangeat, “Spin polarization of Fe monolayers on Ir substrates,” Surf. Sci., 525(1–3), 100–106 (2003).
    [21] D. Spišáka and J. Hafner, “Reconstruction and de-reconstruction of the Ir(100) surface and ultrathin Fe/Ir(100)films,” Surf. Sci, 546(1), 27–38 (2003).
    [22] K. von Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel, and R.Wiesendanger, Complex magnetism of the Fe monolayer on Ir(111), New J. Phys., 9, 396 (2007).
    [23] K. Louzazna and A. Haroun, Magnetic and electronic properties of strained fcc Fe on Ir(001), Thin Solid Films, 374(1), 114–118 (2000).
    [24] W. H. Chen, P. C. Jiang, C. Y. Hsieh, and J. S. Tsay, Structure related magnetic dead layer for ultrathin Fe/Ir(111) films, IEEE Trans. Magn., 50(1), 2000304 (2014).
    [25] S. Andrieu, M. Piecuch and J. F. Bobo, Fe growth on (0001) HCP RU and (111) FCC IR - consequences for structural and magnetic-properties, Phys. Rev. B, 46(8), 4909–4916 (1992).
    [26] M. Henzler, Growth of epitaxial monolayers, Surf. Sci., 357(1–3), 809–819 (1996).
    [27] J. S. Tsay and C. S. Shern, Structure evolution for annealing Co ultrathin films on Pt(111), Surf. Sci., 396(1-3), 20, 313-318 (1998).
    [28] M. T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider and J. Kirschner, Growth, morphology, and crystalline structure ofultrathin Fefilms on CuAu(100), Surf. Sci, 410(2–3), 290–311 (1998).
    [29] S. Andrieu, J. F. Bobo, J. Hubsch, and M. Piecuch, Magnetic-properties of body-centered tetragona iron iridium superlattices, J. Magn. Magn. Mater, 126(1–3), 349–351 (1993).
    [30] S. Andrieu, J. Hubsch, E. Snoeck, H. Fischer, and M. Piecuch, Magnetism of BCT Fe in (100) Feir superlattices, J. Magn. Magn. Mater, 148(1–2), 6–8 (1995).
    [31] V. L. Moruzzi, P. M. Marcus, K. Schwarz, and P. Mohn, Ferromagnetic phases of bcc and fcc Fe, Co, and Ni, Phys. Rev. B, 34(3), 1784–1791 (1986).
    [32] J. S. Tsay, C. S. Yang, Y. D. Yao, Y. Liou, and S. F. Lee, Magnetic properties of ultrathin Co/Si(111)films, Jpn. J. Appl. Phys, 37(11), 5976–5979 (1998).
    [33] C. Chuang, W. Y. Chang, W. H. Chen, J. S. Tsay, W. B. Su, H. W. Chang, and Y. D. Yao, Thickness dependent reactivity and coercivity for ultrathin Co/Si(111)films, Thin Solid Films, 519(23), 8371–8374 (2011).
    [34] M. Sambi, G. Granozzi, Strain analysis of epitaxial ultrathin films on Pt ( 111 ), Surf. Sci., 400(1-3), p239-246 (1998).
    [35] T. Kraft and P. M. Marcus, Elastic constants of Cu and the instability of its bcc structure, Phys. Rev. B, 48, 5886 (1993).
    [36] P. M. Marcus, Bending of a film-substrate system by epitaxy, Phys. Rev. B, 53, 7460 (1996).
    [37] Y. T. Chow, B. H. Jiang, C. H. T. Chang and J. S. Tsay, Enhancing the magnetic anisotropy energy by tuning the contact areas of Ag and Ni at the Ag/Ni interface, Phys. Chem. Chem. Phys., 20, p1504-1512 (2018).
    [38] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys. 59, p1409–1458 (1996).
    [39] J. Coraux, A. T. N'Diaye, C. Busse and T. Michely, Structural Coherency of Graphene on Ir(111), Nano Lett., 8(2), 565-570 (2008).
    [40] J. Coraux, A. T N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. M. Z. Heringdorf, R. V. Gastel, B. Poelsema and T. Michely, New J. Phys., 11, 023006 (2009).
    [41] E. Loginova, S. Nie, K. Thürmer, N. C. Bartelt and K. F. McCarty, Defects of graphene on Ir(111): Rotational domains and ridges, Phys. Rev. B, 80, 085430 (2009).
    [42] I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, Dirac Cones and Minigaps for Graphene on Ir(111), Phys. Rev. Lett., 102, 056808 (2009).
    [43] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81, 109 (2009).
    [44] M. Batzill, The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects, Surf. Sci. Rep., 67(3-4), 83-115 (2012).
    [45] A.T. N'Diaye, J. Coraux, T.N. Plasa, C. Busse and T. Michely, Structure of epitaxial graphene on Ir(111), New J. Phys., 10, 043033 (2008).
    [46] H. Yang, A. D. Vu, A. Hallal, N. Rougemaille, J. Coraux, G. Chen, A. K. Schmid, M. Chshiev, Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures, Nano Lett., 16(1),145-151 (2016).
    [47] F. C. Chen, Y. E. Wu, C. W. Su, and C. S. Shern, Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111), Phys. Rev. B, 66, 184417 (2002).
    [48] T. A. Crowley, B. Daly, M. A. Morri, D. Erts, O. Kazakova, J. J. Boland, B. Wu and J. D. Holmes, Probing the magnetic properties of cobalt–germanium nanocable arrays, J. Mater. Chem., 15, 2408-2413 (2005)
    [49] N. B. Brookes, Y. Chang, and P. D. Johnson, Magnetic interface states and finite-size effects, Phys. Rev. Lett. 67, 354 (1991).
    [50] C. S. Rizal, Y. Ueda, Magnetoresistance and Magnetic Anisotropy Properties of Strain-Induced Co/Ag Multilayer Films, IEEE Trans. Magn., 45, 6 (2009).
    [51] H. Y. Ho, C. C. Chang, H. H. Wu, Y. J. Chen, J. S. Tsay, Magnetic Properties of Ultrathin Fe/Ag/Fe Sandwich on Pt(111), IEEE Trans. Magn., 47, 10 (2011).
    [52] Y. J. Chen, C. C. Chang, H. Y. Ho and J. S. Tasy, Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer, Thin Solid Films, 519, 23 (2011).
    [53] 白木靖寬,吉田貞史編著,王建義編譯,薄膜工程學,二版,全華出版社,臺北市,2006。
    [54] 羅吉宗編著,薄膜科技與應用,二版,全華出版社,臺北市,2005。
    [55] 田民波編著,薄膜技術與薄膜材料,初版,五南出版社,臺北市,2007。
    [56] 李正中編著,薄膜光學與鍍膜技術,二版,藝軒出版社,臺北縣,2001。
    [57] J. S. Tsay and C. S. Shern, Rotated incommensurate domains of Co ultrathin films on Pt(111), Surf. Sci., 396(1-3), 20, 319-326 (1998).
    [58] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed. (William Andrew, New York, 2010).
    [59] 張勁燕,半導體製程設備,第四版,五南出版社,台北市,2005。
    [60] B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Massachusetts, 1972).
    [61] H. O. Pierson, Handbook of Chemical Vapor Deposition, 2nd Edition: Principles, Technology and Applications (William Andrew, New York, 1999).
    [62] R. Murali, Graphene Nanoelectronics From Materials to Circuits, Springer, Altanta, USA (2011).
    [63] 王咸捷,國立臺灣師範大學碩士論文 (2015)。
    [64] C.J. Lin, G.L. Gorman, C.H. Lee, R.F.C. Farrow, E.E. Marinero, H.V. Do, H. Notarys, and C.J. Chien, Magnetic and structural properties of Co/Pt multilayers, J. Magn. Magn. Mater. 93, 194 (1991).
    [65] F. J. A. den Broeder, W. Hoving, and P. J. H. Bloemen, Magnetic anisotropy of multilayers, J. Magn. Magn. Mater. 93, 562 (1991).
    [66] N. Rougemaille, A. T. N'Diaye, J. Coraux, C. Vo-Van, O. Fruchart, and A. K. Schmid, Perpendicular magnetic anisotropy of cobalt films intercalated under graphene, Appl. Phys. Lett. 101, 142403 (2012).
    [67] 克拉脫維著,施哲人、唐江濤同譯,晶體,初版,科學出版社,台北市,1974。
    [68] 荷爾頓、辛吉爾合著,晶體與晶體生長,初版,徐氏出版社,台北市,1968。
    [69] C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Inc., New York City, 2004).
    [70] 閻守勝編著、倪澤恩校訂,固態物理槪論,初版,五南圖書出版股份有限公司,臺北市,2006。
    [71] T. A. Roth, The Surface and Grain Boundary Energies of Iron, Cobalt and Nickel, Mater. Sci. Eng. 18, 183 (1975).
    [72] R. J. Needs and M. Mausfield, Calculations of the surface stress tensor and surface energy of the (111) surfaces of iridium, platinum and gold, J. Phys. Condensed Matter 1, 7555 (1989).
    [73] S. R. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and Surface Free Energy of Graphene Films, Langmuir. 25, 11078 (2009).
    [74] G. A. Somorjai, Chemistry in two dimensions surface (Cornell University Press, Ithaca and London, 1981).
    [75] A. T. Price, A. H. Holl and A. P. Greenough, The surface energy and self diffusion coefficient of solid iron above 1350°C, Acta Metall. 12(1), 49-58 (1964).
    [76] M. Hansen, Constitution of Binary Alloys, 2nd ed. (McGRAW-HILL book company, New York, 1958).
    [77] L. J. Swartzendruber, The Fe-Ir (Iron-Iridium) system, Bull. Alloy Phase Diag., 5(1), 48-52 (1984).
    [78] O.K. Goldbeck, Iron—Iridium Fe—Ir. In: IRON—Binary Phase Diagrams. Springer, Berlin, Heidelberg (1982).
    [79] P. P. Patel, M. K. Datta, O. I. Velikokhatnyi, P. Jampani, D. Hong, J. A. Poston, A. Manivannan and P. N. Kumta, Nanostructured robust cobalt metal alloy based anode electro-catalysts exhibiting remarkably high performance and durability for proton exchange membrane fuel cells, J. Mater. Chem. A, 3, 14015-14032 (2015).
    [80] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerke, Thermodynamic assessment of the Sn–Ag–Co system and solidificationsimulation of the ternary alloy, J. Electron. Mater., 29, 1122-1236 (2000).
    [81] H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Ag-Co, Ag-Er, Ag-Pd, B-Ce, Bi-La, Bi-Mn, Cu-Ge, Cu-Tm, Er-Y, Gd-Tl, H-La, and Hg-Te, J. Phase Equilib. Diffus., 36(1), p10-21, (2015).
    [82] MTDATA – Phase Diagram Software from the National Physical Laborator [C-Ir phase diagram]. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/cir.htm (data of access 2019/07/10)
    [83] MTDATA – Phase Diagram Software from the National Physical Laboratory. keyword: Ag-Ir phase diagram. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/agir.htm (data of access 2019/07/10)
    [84] MTDATA – Phase Diagram Software from the National Physical Laboratory [C-Co phase diagram]. Retrieved from http://resource.npl.co.uk/
    mtdata/phdiagrams/cco.htm (data of access 2019/07/10)
    [85] MTDATA – Phase Diagram Software from the National Physical Laboratory [Ag-C phase diagram]. Retrieved from http://resource.npl.co.uk/mtdata/
    phdiagrams/agc.htm (data of access 2019/07/10)
    [86] N. R. Gall', E. V. Rut'kov and A. Ya. Tontegode, Physics of the Solid State, 46(2), 371–377 (2004).
    [87] I. Carlomagno, J. Drnec, A. M. Scaparro, S. Cicia, S. Vlaic, R. Felici, and C. Meneghini, Co-Ir interface alloying induced by thermal annealing, J. Appl. Phys, 120, 195302 (2016).
    [88] J. S. Tsay and Y. C. Liu, Magnetic properties of ultrathin Si/Co/Ir(111)films, J. Phys.: Condens. Mater., 20(44), 445003 (2008).
    [89] 李良梧編著,現代物理學,初版,李良梧書坊,臺北市,2004。
    [90] Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Modern physics (Thomson Brooks, Belmont, CA, 2005).
    [91] R.P. Eischens, W.A. Pliskin, The infrared spectra of adsorbed molecules, Adv. Catal., 10, 1 (1958).
    [92] L. H. Little, Infrared Spectra of Adsorbed Species. (Acad. Press, New York 1966).
    [93] M. L. Hair, Infrared Spectroscopy in Surface Chemistry. (Marcel Dekker, New York 1966).
    [94] R. G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, J. Chem. Phys. 44, 310 (1966).
    [95] F. M. Hoffmann, Infrared reflection-absorption spectroscopy of adsorbed molecules, Surf. Sci. Rep., 3, 107 (1983).
    [96] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry. Weinheim, Germany: VCH, 1985.
    [97] L. E. Davis et al., Handbook of Auger electron spectroscopy, 2nd ed., (Physical Electronics Industries, Inc., Eden Prairie, 1976).
    [98] S. Tanuma, C.J. Powell and D.R. Penn, Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interf. Analy. 35, 268-275 (2003).
    [99] S. Ichimura, R. Shimizu, J.P. Langeron, Backscattering correction for quantitative Auger analysis III. A simple functional representation of electron backscattering factors, Surf. Sci. 124, L49 (1983).
    [100] C.J. Powell, Inelastic interactions of electrons with surfaces: application to Auger-electron spectroscopy and X-ray photoelectron spectroscopy, Surf. Sci. 299, 34 (1994).
    [101] H. Ibach, Surface Vibrations of Silicon Detected by Low-Energy Electron Spectroscopy, Phys. Rev. Lett. 27, 253 (1971).
    [102] E. P. Lewis, The Effects of a Magnetic Field on Radiation—Memoirs by Faraday, Kerr and Zeeman (American, New York, 1990).
    [103] M. Faraday, Diary, 30 August 1845, 4, 7434, and 7437–7444.
    [104] 金重勳,磁性技術手冊,磁性技術學會,竹東,2002。
    [105] Z.Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect (SMOKE), J. Magn. Magn. Mater. 200, 664 (1999).
    [106] Z. Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect, Rev. Sci. Instrum, 71, 1243 (2000).
    [107] Z.Q. Qiu, J. Pearson, and S.D. Bader, Additivity of the magneto-optic Kerr signal in ultrathin Fe(110)/Ag(111) superlattices, Phys. Rev. B 45, 7211 (1992).
    [108] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 3rd ed., Chap. 8, p. 352, 1999).
    [109] D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman & Hall, London, 1991).
    [110] M. Zharnikov, A. Dittschar, W. Kuch, C. M. Schneider, and J. Kirschner, Magnetic Order-Disorder Transition Mediated by a Temperature-Driven Structural Transformation, Phys. Rev. Lett., 76, 4620 (1996).
    [111] M. T. Lin, W. C. Lin, C. C. Kuo, and C. L. Chiu, Critical evolution of spin-reorientation transition in magnetic CoxNi1−x/Cu(100) films upon precise variation of d-band filling, Phys. Rev. B, 62, 14268 (2000).
    [112] J. G. Wright, Ferromagnetism in epitaxial F.C.C. iron films, Philos. Mag., 8, 24, Pages 217-223 (2006).
    [113] B. Wei, M. Shima, R. Pati, S. K. Nayak, D. J. Singh, R. Ma, Y. Li, Y. Bando, S. Nasu, P. M. Ajayan, Room‐Temperature Ferromagnetism in Doped Face‐Centered Cubic Fe Nanoparticles, Small, 2, 6, Pages 804-809 (2006).
    [114] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, vol. 7: Theory of Elasticity, 2nd ed., Pergamon Press, Oxford, (1970).
    [115] T. Kraft, P. M. Marcus, M. Methfessel, M. Sheffler, Ferroelectric structure of KNbO3 and KTaO3 from first-principles calculations, Phys. Rev. B, 48, 9 (1993).
    [116] H. Ma, S. L. Qiu and P. M. Marcus, Pressure instability of bcc iron, Phys. Rev. B, 66, 024113 (2002).
    [117] I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. VollhardtCalculated phonon spectra of paramagnetic iron at the α-γ phase transition, Phys. Rev. B 85, 020401(R) (2012).
    [118] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature (London) 448, 571 (2007).
    [119] Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature (London) 444, 347 (2006).
    [120] V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov,M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, Graphite and Graphene as Perfect Spin Filters, Phys. Rev. Lett. 99, 176602 (2007).
    [121] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett. 101, 157601 (2008).
    [122] F. El Gabaly, K. F. McCarty, A. K. Schmid, J. de la Figuera, M. C. Muñoz, L. Szunyogh, P. Weinberger, and S. Gallego, Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001), New J. Phys. 10, 073024 (2008).
    [123] B. Santos, S. Gallego, A. Mascaraque, K. F. McCarty, A. Quesada, A. T. N’Diaye, A. K. Schmid, and J. de la Figuera, Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001), Phys. Rev. B 85 134409 (2012).
    [124] F. Ajejas, A. Gudín, R. Guerrero, A. A. Barcelona, J. M. Diez, L. M. Costa, P. Olleros, M. A. Niño, S. Pizzini, J. Vogel, M. Valvidares, P. Gargiani, M. Cabero, M. Varela, J. Camarero, R. Miranda and P. Perna, Unraveling Dzyaloshinskii–Moriya Interaction and Chiral Nature of Graphene/Cobalt Interface, Nano Lett. ,18(9), 5364-5372 (2018).
    [125] N. R. Gall’, E. V. Rut’kov, and A. Ya. Tontegode, Interaction of Silver Atoms with Iridium and with a Two-Dimensional Graphite Film on Iridium: Adsorption, Desorption, and Dissolution, Phys. Solid State, 46(2), 371-377 (2004).
    [126] J. S. Tsay, Y. D. Yao and Y. Liou, Magnetic phase diagram study of ultrathin Co/Si(111) films, Surf. Sci., 454-456, 856-859 (2000)
    [127] S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli, and N. Rougemaille, Appl. Phys. Lett., 104, 101602 (2014)
    [128] J. Drnec, S. Vlaic, I. Carlomagno, C. J. Gonzalez, H. Isern, F. Carlà, R. Fiala, N. Rougemaille, J. Coraux and R. Felici, Surface alloying upon Co intercalation between graphene and Ir(111), Carbon, 94, 554-559 (2015).
    [129] G. Deokar, J. Avila, I. R. Colambo, J. L. Codron, C. Boyaval, E. Galopin, M. C. Asensio, D. Vignaud, Towards high quality CVD graphene growth and transfer, Carbon, 89, 82-92 (2015).
    [130] C. D. England, W. R. Bennett and C. M. Falco, Magnetic and structural characterization of copper/cobalt multilayers, J. Appl. Phys, 64, 5757 (1988)
    [131] A. Thiaville, S. Rohart, E. Jué, V. Cros and A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films, EPL, 100, 57002 (2012).
    [132] T. H. Pham, J. Vogel, J. Sampaio, M. Vaňatka, J.-C. Rojas, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville, S. Pizzini, Very large domain wall velocities in Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction, EPL, 113, 67001 (2016).
    [133] S. Woo, K. Litzius, B. Kruger, M. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater. 15, 501 (2016).
    [134] A. Hrabec, N. A. Porter, A. Wells, M. J. Benitez, G. Burnell, S. McVitie, D. McGrouther, T. A. Moore, and C. H. Marrows, Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films, Phys. Rev. B, 90, 020402 (2014).
    [135] S.-G. Je, D.-H. Kim, S.-C. Yoo, B.-C. Min, K.-J. Lee, and S.-B. Choe, Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction, Phys. Rev. B 88, 214401 (2013).
    [136] M. J. Benitez, A. Hrabec, A. P. Mihai, T. A. Moore, G. Burnell, D. McGrouther, C. H. Marrows, and S. McVitie, Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer, Nat. Commun. 6, 8957 (2015).
    [137] G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N’Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films, Phys. Rev. Lett. 110, 177204 (2013).
    [138] G. Chen, A. Mascaraque, A. T. N’Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling, Appl. Phys. Lett., 106, 242404 (2015).
    [139] M. Perini, S. Meyer, B. Dupé, S. Malottki, A. Kubetzka, K. Bergmann, Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111), Phys. Rev. B, 97, 184425 (2018).
    [140] K. Zeissler, M. Mruczkiewicz, S. Finizio, J. Raabe, P. M. Shepley, A. V. Sadovnikov, S. A. Nikitov, K. Fallon, S. McFadzean, S. McVitie, T. A. Moore, G. Burnell and C. H. Marrows, Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks, Sci. Rep., 7, 15125 (2017).
    [141] A. Belabbes, G. Bihlmayer, F. Bechstedt, S. Blügel and A. Manchon, Hund’s Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d-5d Interfaces, Phys. Rev. Lett. 117, 247202 (2016).
    [142] B. van Dijk, Skyrmions and the Dzyaloshinskii-Moriya interaction, Master’s thesis, Utrecht University, Netherlands (2014).
    [143] P. Gargiani, R. Cuadrado, H. B. Vasili, M. Pruneda & M. Valvidares, Graphene-based synthetic antiferromagnets and ferrimagnets, Nat. Commun., 8, 699 (2017).
    [144] T. H. Pham, J. Vogel, J. Sampaio, M. Vaňatka, J. C. Rojas, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser, E. Otero, A. Thiaville and S. Pizzini, Very large domain wall velocities in Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction, EPL, 113, 67001 (2016)
    [145] N. Nagaosa and Y. Tokura, Topological properties and dynamics of
    magnetic skyrmions, Nat. Nanotechnol., 8, 899-911 (2013).
    [146] T. N. G. Meier, M. Kronseder and C. H. Back, Domain-width model for perpendicularly magnetized systems with Dzyaloshinskii-Moriya interaction, Phys. Rev. B, 96, 144408 (2017).
    [147] G. Andersson and B. Hjörvarsson, Effects of strain on magnetic anisotropy in Fe- and Co-based heterostructures, Phase Transitions, 81, 7-8, p679-701 (2008).
    [148] A. Murayama, K. Hyomi, J. Eickmann and C. M. Falco, Effects of misfit strain due to epitaxial growth on interface perpendicular magnetic anisotropy in ultrathin Co/Au/Cu(111) films, J. Appl. Phys, 87, 9 (2000).
    [149] M. Ohtake, O. Yabuhara, Y. Nukaga and M. Futamoto, Preparation of Co(0001)hcp and (111)fcc Films on Single-Crystal Oxide Substrates, J. Phys.: Conf., 303, 012016 (2011).
    [150] V. M. Marx, C. Kirchlechner, B. Breitbach, M. J. Cordill, D. M. Többens, T. Waitz and G. Dehm, Strain-induced phase transformation of a thin Co film on flexible substrates, Acta Mater., 121, p227-233 (2016).

    無法下載圖示 本全文未授權公開
    QR CODE