簡易檢索 / 詳目顯示

研究生: 劉郁欣
Liu, Yu-Hsin
論文名稱: Manganese and Iron Carbonyl Chalcogenide Clusters: Syntheses, Structural Transformations, Exotic Properties, and Computational Studies
Manganese and Iron Carbonyl Chalcogenide Clusters: Syntheses, Structural Transformations, Exotic Properties, and Computational Studies
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 383
DOI URL: http://doi.org/10.6345/NTNU202001367
論文種類: 學術論文
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Chapter 1 Inorganic-Organic Hybrid Se−Fe−Cu−CO Semiconducting Polymers: Ligand/Cluster-Induced Dimensionality Transformations, Unique Photodegradation, and Rare Short-Wavelength Infrared Emission 1 1.1 Introduction 3 1.2 Results and Discussion 5 1.3 Conclusion 22 1.4 Experimental Section 23 Chapter 2 Manganese Carbonyl Selenide Radical Cluster: Facile Syntheses, Reactivity Study, and Paramagnetic as well as Semiconducting Properties 95 2.1 Introduction 97 2.2 Results and Discussion 99 2.3 Conclusion 115 2.4 Experimental Section 116 Chapter 3 Manganese Telluride Carbonyl Complexes: Facile Syntheses and Exotic Properties—Reversible Transformations, Hydrogen Generation, Paramagnetic and Semiconducting Properties 175 3.1 Introduction 177 3.2 Results and Discussion 179 3.3 Conclusion 200 3.4 Experimental Section 201 Chapter 4 The First Naked Bismuth−Chalcogen Metal Carbonyl Clusters: Extraordinary Nucleophilicity of Bi Atoms and Semiconducting Characteristics 279 4.1 Introduction 281 4.2 Results and Discussion 282 4.3 Conclusion 295 4.4 Experimental Section 296 Chapter 5 Conclusions 379 Appendix A Publications 383

    1. Se/Fe/Cu System
    (1) (a) Preparative Inorganic Reactions; Jolly, W. L. Ed.; Wiley Interscience: New York, 1964. (b) Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; Wiley-VCH: Weinheim, Germany, 1995. (c) Frontiers in Crystal Engineering; Tiekink, E. R. T., Vittal, J. J., Eds.; Wiley: Chichester, UK, 2006. (d) Steed, J. W., Atwood, J. L. Supramolecular Chemistry, 2nd ed.; Wiley: Chichester, UK, 2009. (e) Batten, S. R., Neville, S. M., Turner, D. R. Coordination polymers: Design, Analysis and Application; RSC: Cambridge, U.K., 2009. (f) Chen, X.-M. Modern Inorganic Synthetic Chemistry; Xu, R., Pang, W., Huo, Q., Eds.; Elsevier: B.V., 2011.
    (2) (a) Yaghi, O. M.; Li, G.; Li, H. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework. Nature 1995, 378, 703–706. (b) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. (c) Winter, A.; Schubert, U. S. Synthesis and Characterization of Metallo-Supramolecular Polymers. Chem. Soc. Rev. 2016, 45, 5311–5357. (d) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A. Entangled Two-Dimensional Coordination Networks: A General Survey. Chem. Rev. 2014, 114, 7557–7580. (e) Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Withersby, M. A.; Schröder, M. Inorganic Crystal Engineering using Self-Assembly of Tailored Building-Blocks. Coord. Chem. Rev. 1999, 183, 117–138. (f) Moulton, B.; Zaworotko, M. J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev. 2001, 101, 1629–1658. (g) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Functional Porous Coordination Polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375. (h) Kitagawa, S.; Uemura, K. Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds. Chem. Soc. Rev. 2005, 34, 109–119. (i) Robin, A. Y.; Fromm, K. M. Coordination Polymer Networks with O- and N-Donors: What They Are, Why and How They Are Made. Coord. Chem. Rev. 2006, 250, 2127–2157. (j) Fromm, K. M. Coordination Polymer Networks with s-Block Metal Ions. Coord. Chem. Rev. 2008, 252, 856–885. (k) Robson, R. Design and its Limitations in the Construction of Bi- and Poly-Nuclear Coordination Complexes and Coordination Polymers (aka MOFs): A Personal View. Dalton Trans. 2008, 5113–5131. (l) Schubert, U. Cluster-Based Inorganic–Organic Hybrid Materials. Chem. Soc. Rev. 2011, 40, 575–582. (m) Leong, W. L.; Vittal, J. J. One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 2011, 111, 688–764.
    (3) (a) Mendiratta, S.; Usman, M.; Lu, K.-L. Expanding the Dimensions of Metal–Organic Framework Research towards Dielectrics. Coord. Chem. Rev. 2018, 360, 77–91. (b) Usman, M.; Mendiratta, S.; Lu, K.-L. Semiconductor Metal–Organic Frameworks: Future Low-Bandgap Materials. Adv. Mater. 2017, 29, 1605071. (c) Yue, Q.; Gao, E.-Q. Azide and Carboxylate as Simultaneous Coupler for Magnetic Coordination Polymers. Coord. Chem. Rev. 2019, 382, 1–31. (d) Sun, J.-K.; Yang, X.-D.; Yang, G.-Y.; Zhang, J. Bipyridinium Derivative-Based Coordination Polymers: From Synthesis to Materials Applications. Coord. Chem. Rev. 2019, 378, 533–560. (e) Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X.-H. Conformation Versatility of Ligands in Coordination Polymers: From Structural Diversity to Properties and Applications. Coord. Chem. Rev. 2018, 375, 558–586.
    (4) (a) Shieh, M.; Liu, Y.-H.; Li, Y.-H.; Lin, R. Y. Metal Carbonyl Cluster-Based Coordination Polymers: Diverse Syntheses, Versatile Network Structures, and Special Properties. CrystEngComm 2019, 21, 7341–7364, and references therein. (b) Shieh, M.; Yu, C.-C.; Miu, C.-Y.; Kung, C.-H.; Huang, C.-Y.; Liu, Y.-H.; Liu, H.-L.; Shen, C.-C. Semiconducting Coordination Polymers Based on the Predesigned Ternary Te-Fe-Cu Carbonyl Cluster and Conjugation-Interrupted Dipyridyl Linkers. Chem. Eur. J. 2017, 23, 11261−11271. (c) Lin, C.-N.; Jhu, W.-T.; Shieh, M. Vapochemically and Mechanochemically Reversible Polymerization/Depolymerization of S–Fe–Cu Carbonyl Clusters. Chem. Commun. 2014, 50, 1134−1136. (d) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, B.-G.; Chu, Y.-Y.; Miu, C.-Y.; Liu, H.-L.; Shen, C.-C. Semiconducting Tellurium-Iron-Copper Carbonyl Polymers. J. Am. Chem. Soc. 2008, 130, 14114–14116.
    (5) (a) Bai, J.; Leiner, E.; Scheer, M. P2-Ligand Complexes as Building Blocks for the Formation of One-Dimensional Polymers. Angew. Chem. Int. Ed. 2002, 41, 783–786. (b) Moussa, M. E.; Fleischmann, M.; Peresypkina, E. V.; Dütsch, L.; Seidl, M.; Balázs, G.; Scheer, M. Strategies for the Construction of Supramolecular Dimers versus Homoleptic 1D Coordination Polymers Starting from the Diphosphorus [Cp2Mo2(CO)4(η2-P2)] Complex and Silver(I) Salts. Eur. J. Inorg. Chem. 2017, 3222–3226. (c) Attenberger, B.; Peresypkina, E. V.; Scheer, M. Novel Two- and Three-Dimensional Organometallic−Organic Hybrid Materials Based on Polyphosphorus Complexes. Inorg. Chem. 2015, 54, 7021−7029.
    (6) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Recent Progress in the Chemistry of Anionic Groups 6–8 Carbonyl Chalcogenide Clusters. Coord. Chem. Rev. 2012, 256, 637–694, and references therein. (b) Shieh, M.; Liu, Y.-H.; Lin, T.-S.; Lin, Y.-C.; Cheng, W.-K.; Lin, R. Y. Manganese Telluride Carbonyl Complexes: Facile Syntheses and Exotic Properties—Reversible Transformations, Hydrogen Generation, Paramagnetic, and Semiconducting Properties. Inorg. Chem. 2020, 59, 6923−6941. (c) Shieh, M.; Liu, Y.-H.; Huang, C.-Y.; Chen, S.-W.; Cheng, W.-K.; Chien, L.-T. The First Naked Bismuth−Chalcogen Metal Carbonyl Clusters: Extraordinary Nucleophilicity of the Bi Atom and Semiconducting Characteristics. Inorg. Chem. 2019, 58, 6706−6721. (d) Shieh, M.; Liu, Y.-H.; Wang, C.-C.; Jian, S.-H.; Lin, C.-N.; Chen, Y.-M.; Huang, C.-Y. A Comparative Study on NHC-Functionalized Ternary Se/Te–Fe–Cu Compounds: Synthesis, Catalysis, and the Effect of Chalcogens. New J. Chem. 2019, 43, 11832−11843. (e) Shieh, M.; Yu, C.-C.; Hsing, K.-J.; Chang, W.-J. A Multiply Bonded Trigonal-Planar Bismuth(III) Complex: Prodigious Lewis Acidity, Solvatochromism, Etherification, and Semiconducting Characteristics. Chem. Eur. J. 2017, 23, 11677–11683. (f) Lin, C.-N.; Huang, C.-Y.; Yu, C.-C.; Chen, Y.-M.; Ke, W.-M.; Wang, G.-J.; Lee, G.-A.; Shieh, M. Iron Carbonyl Cluster-Incorporated Cu(I) NHC Complexes in Homocoupling of Arylboronic Acids: An Effective [TeFe3(CO)9]2− Ligand. Dalton Trans. 2015, 44, 16675–16679.
    (7) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. The Chemistry of Iron Carbonyl Sulfide and Selenide Anions. Inorg. Chem. 1995, 34, 4392‒4401.
    (8) Shieh, M.; Miu, C.-Y.; Lee, C.-J.; Chen, W.-C.; Chu, Y.-Y.; Chen, H.-L. Construction of Copper Halide-Triiron Selenide Carbonyl Complexes: Synthetic, Electrochemical, and Theoretical Studies. Inorg. Chem. 2008, 47, 11018‒11031.
    (9) (a) Kolea, G. K.; Vittal, J. J. Solid-State Reactivity and Structural Transformations involving Coordination Polymers. Chem. Soc. Rev. 2013, 42, 1755‒1775. (b) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steedk, J. W.; Waddell, D. C. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. (c) Friščić, T.; Halasz, I.; Štrukil, V.; Eckert-Maksić, M.; Dinnebier, R. E. Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs. Croat. Chem. Acta 2012, 85, 367–378.
    (10) Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallisation Outcome. CrystEngComm 2009, 11, 418–426.
    (11) Batten, S. R.; Robson, R. Interpenetrating Nets: Ordered, Periodic Entanglement. Angew. Chem. Int. Ed. 1998, 37, 1460–1494.
    (12) (a) Yuan, W.; Friščić, T.; Apperley, D.; James, S. L. High Reactivity of Metal–Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials. Angew. Chem. Int. Ed. 2010, 49, 3916–3919. (b) Matoga, D.; Oszajca, M.; Molenda, M. Ground to Conduct: Mechanochemical Synthesis of a Metal–Organic Framework with High Proton Conductivity. Chem. Commun. 2015, 51, 7637–7640. (c) Wang, F.; Ni, C.-Y.; Liu, Q.; Li, F.-L.; Shi, J.; Li, H.-X.; Lang, J.-P. [Pb(Tab)2(4,4'-bipy)](PF6)2: Two-Step Ambient Temperature Quantitative Solid-State Synthesis, Structure and Dielectric Properties. Chem. Commun. 2013, 49, 9248–9250. (d) Liu, B.; Zhou, H.-F.; Hou, L.; Wang, J.-P.; Wang, Y.-Y.; Zhu, Z. Structural Diversity of Cadmium(II) Coordination Polymers Induced by Tuning the Coordination Sites of Isomeric Ligands. Inorg. Chem. 2016, 55, 8871–8880. (e) Chen, Z.; Xiang, S.; Zhao, D.; Chen, B. Reversible Two-Dimensional−Three Dimensional Framework Transformation within a Prototype Metal−Organic Framework. Cryst. Growth Des. 2009, 9, 5293–5296.
    (13) (a) Braga, D.; Grepioni, F. Hydrogen-Bonding Interactions with the CO Ligand in the Solid State. Acc. Chem. Res. 1997, 30, 81−87. (b) Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. Hydrogen Bonding in Organometallic Crystals. 2. C–H···O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. J. Am. Chem. Soc. 1995, 117, 3156−3166.
    (14) (a) In The Importance of Pi-Interactions in Crystal Engineering : Frontiers in Crystal Engineering; Tiekink, E. R. T., Zukerman-Schpector, J., Eds.; Wiley, 2012. (b) Biradha, K.; Zaworotko, M. J. A Supramolecular Analogue of Cyclohexane Sustained by Aromatic C-H···π Interactions: Complexes of 1,3,5-Trihydroxybenzene with Substituted Pyridines. J. Am. Chem. Soc. 1998, 120, 6431−6432.
    (15) (a) Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318−4440. (b) Sakamoto, R.; Wu, K.-H.; Matsuoka, R.; Maeda, H.; Nishihara, H. π-Conjugated Bis(terpyridine)metal Complex Molecular Wires. Chem. Soc. Rev. 2015, 44, 7698−7714. (c) Warren, J. J.; Ener, M. E.; Vlček Jr., A.; Winkler, J. R.; Gray, H. B. Electron Hopping through Proteins. Coord. Chem. Rev. 2012, 256, 2478−2487.
    (16) Shieh, M.; Yu, C.-C. Ternary Copper-Incorporated Group 8 (Ru or Fe) Carbonyl Chalcogenide Complexes and Polymers: From Syntheses to Applications. J. Organomet. Chem. 2017, 849–850, 219–227.
    (17) (a) Kubelka, P.; Munk, F. Ein Beitrag zür Optik der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. (b) Tauc, J. Absorption Edge and Internal Electric Fields in Amorphous Semiconductors. Mater. Res. Bull. 1970, 5, 721–729.
    (18) Nguyen, T.-A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc. 2015, 137, 13319–13324.
    (19) (a) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. (b) Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764.
    (20) (a) Chen, C.; Ma, W.; Zhao, J. Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation. Chem. Soc. Rev. 2010, 39, 4206–4219. (b) Paola, A. D.; García-López, E.; Marcì, G.; Palmisano, L. A Survey of Photocatalytic Materials for Environmental Remediation. J. Hazard. Mater. 2012, 211–212, 3–29.
    (21) (a) Wu, X.-Y.; Qi, H.-X.; Ning, J.-J.; Wang, J.-F.; Ren, Z.-G.; Lang, J.-P. One Silver(I)/Tetraphosphine Coordination Polymer Showing Good Catalytic Performance in the Photodegradation of Nitroaromatics in Aqueous Solution. Appl. Catal. B 2015, 168–169, 98–104. (b) Qi, H.-X.; Wang, J.-F.; Ren, Z.-G.; Ninga, J.-J.; Lang, J.-P. Syntheses and Structures of Two Gold(I) Coordination Compounds Derived from P–S Hybrid Ligands and their Efficient Catalytic Performance in the Photodegradation of Nitroaromatics in Water. Dalton Trans. 2015, 44, 5662–5671.
    (22) (a) Zhang, M.-M.; Dong, X.-Y.; Wang, Z.-Y.; Li, H.-Y.; Li, S.-J.; Zhao, X.; Zang, S.-Q. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew. Chem. Int. Ed. 2019, 58, 2–8. (b) Wang, J.-Y.; Huang, R.-W.; Wei, Z.; Xi, X.-J.; Dong, X.-Y.; Zang, S.-Q. Linker Flexibility-Dependent Cluster Transformations and Cluster-Controlled Luminescence in Isostructural Silver Cluster-Assembled Materials (SCAMs). Chem. Eur. J. 2019, 25, 3376–3381. (c) Perruchas, S.; Goff, X. F. L.; Maron, S.; Maurin, I.; Guillen, F.; Garcia, A.; Gacoin, T.; Boilot, J.-P. Mechanochromic and Thermochromic Luminescence of a Copper Iodide Cluster. J. Am. Chem. Soc. 2010, 132, 10967–10969. (d) He, H.; Zhu, Q.-Q.; Sun, F.; Zhu, G. Two 3D Metal−Organic Frameworks Based on CoII and ZnII Clusters for Knoevenagel Condensation Reaction and Highly Selective Luminescence Sensing. Cryst. Growth Des. 2018, 18, 5573−5581. (e) Song, X.-Q.; Liu, P.-P.; Liu, Y.-A.; Zhou, J.-J.; Wang, X.-L. Two Dodecanuclear Heterometallic [Zn6Ln6] Clusters Constructed by a Multidentate Salicylamide Salen-Like Ligand: Synthesis, Structure, Luminescence and Magnetic Properties. Dalton Trans. 2016, 45, 8154–8163. (f) Zeng, G.; Xing, S.; Han, X.; Xin, B.; Yang, Y.; Wang, X.; Li, G.; Shi, Z.; Feng, S. Reversible Photoluminescence Switching Behavior and Luminescence Thermochromism of Copper(I) Halide Cluster Coordination Polymers. RSC Adv. 2015, 5, 40792–40797.
    (23) (a) Schubert, E. F. In Light-Emitting Diodes; Cambridge University Press: Cambridge, UK, 2006. (b) Kim, D. Y.; Song, D. W.; Chopra, N.; Somer, P. D.; So, F. Organic Infrared Upconversion Device. Adv. Mater. 2010, 22, 2260−2263. (c) Burkow, L.; Onyekachi, I.; Sockwell, N.; Morency, E.; Sosa, P. The Use of Near Infrared Light Emitting Diodes in Treating Sports-Related Injuries: A Review. Research 2014, 1, 1277. (d) Lev-Tov, H.; Brody, N.; Siegel, D.; Jagdeo, J. Inhibition of Fibroblast Proliferation In Vitro Using Low-Level Infrared Light-Emitting Diodes. Dermatol. Surg. 2013, 39, 422−425.
    (24) (a) Kubas, G. J. Tetrakis(Acetonitrile)Copper(I) Hexafluorophosphate. Inorg. Synth. 1979, 19, 90−92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. The {Bis-2,6-[1-(2-imidazol-4-ylethylimino)ethyl]pyridine)copper(I) Cation. A Synthetic CuI Oxygen Carrier in Solution as a Potential Model for Oxyhemocyanin. J. Chem. Soc., Dalton Trans. 1980, 1827−1837.
    (25) Shieh M.; Huang, K.-T. unpublished results.
    (26) Shieh M.; Ke, W.-M. unpublished results.
    (27) Shieh M.; Chen, W.-C. unpublished results.
    (28) Shieh M.; Huang, C.-Y. unpublished results.
    (29) Shieh M.; Li, Y.-W. unpublished results.
    (30) Bruker, SADABS, Bruker AXS Inc.; Madison, Wisconsin, USA, 2003.
    (31) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112−122.
    (32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
    (33) Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473.
    (34) (a) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. (b) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic Effects in Gold Chemistry. I. Diatomic Gold Compounds. J. Chem. Phys. 1989, 91, 1762−1774. (c) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123−141. (d) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80, 1431−1441.
    (35) Ravel, B.; Newville, M. Athena, Artemis, Hephaestus: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537−541.

    2. Se/Mn/CO System
    (1) (a) In The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley: New York, 1990. (b) In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, Germany, 1999. (c) Ansari, M. A.; Ibers, J. A. Soluble Selenides and Tellurides. Coord. Chem. Rev. 1990, 100, 223−266. (d) Kanatzidis, M. G.; Huang, S.-P. Coordination Chemistry of Heavy Polychalcogenidie Ligands. Coord. Chem. Rev. 1994, 130, 509−621. (e) Richmond, M. G. Annual Survey of Organometallic Metal Cluster Chemistry for the Year 2003. Coord. Chem. Rev. 2005, 249, 2763−2786. (f) Roof, L. C.; Kolis, J. W. New Developments in the Coordination Chemistry of Inorganic Selenide and Telluride Ligands. Chem. Rev. 1993, 93, 1037−1080. (g) Herrmann, W. A.; Weichmann, J.; Serrano, R.; Blechschmitt, K.; Pfisterer, H.; Ziegler, M. L. Seleno- and Telluroformaldehyde as Bridging Ligands in Organometallic Complexes. Angew. Chem. Int. Ed. Engl. 1983, 22, 314−315.
    (2) (a) Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752−2875. (b) Luo, Y.-H.; Dong, L.-Z.; Liu, J.; Li, S.-L.; Lan, Y.-Q. From Molecular Metal Complex to Metal-Organic Framework: The CO2 Reduction Photocatalysts with Clear and Tunable Structure. Coord. Chem. Rev. 2019, 390, 86–126. (c) Sinopoli, A.; Porte, N. T. L.; Martinez, J. F.; Wasielewski, M. R.; Sohail, M. Manganese Carbonyl Complexes for CO2 Reduction. Coord. Chem. Rev. 2018, 365, 60–74. (d) Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. J. Am. Chem. Soc. 2019, 141, 6569−6582. (e) Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R.; Grills, D. C.; Ertem, M. Z.; Rochford, J. Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes. J. Am. Chem. Soc. 2017, 139, 2604−2618. (f) Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction. Angew. Chem. Int. Ed. 2011, 50, 9903–9906. (g) Matson, B. D.; McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M.; Sarangi, R. Effect of Redox Active Ligands on the Electrochemical Properties of Manganese Tricarbonyl Complexes. Inorg. Chem. 2019, 58, 7453−7465.
    (3) (a) Kong, G.; Harakas, G. N.; Whittlesey, B. R. An Unusual Transition Metal Cluster Containing a Seven Metal Atom Plane. Syntheses and Crystal Structures of [Mn][Mn7(THF)6(CO)12]2, Mn3(THF)2(CO)10, and [Mn(THF)6][Mn(CO)5]2. J. Am. Chem. Soc. 1995, 117, 3502–3509. (b) Bau, R.; Kirtley, S. W.; Sorrell, T. N.; Winarko, S. Preparation and Structure Determination of the [Mn3(CO)14]– Anion. Comments on Staggered vs. Eclipsed Carbonyl Groups and Linear vs. Bent M–M–M and M–H–M Bonds. J. Am. Chem. Soc. 1974, 96, 988–993. (c) Kirtley, S. W.; Olsen, J. P.; Bau, R. Location of the Hydrogen Atoms in H3Mn3(CO)12. A Crystal Structure Determination. J. Am. Chem. Soc. 1973, 95, 4532–4536. (d) Poplaukhin, P. V.; Chen, X.; Meyers, E. A.; Shore, S. G. Lanthanide−Transition Metal Carbonyl Complexes: Condensation of Solvent-Separated Ion-Pair Compounds into Extended Structures. Inorg. Chem. 2006, 45, 10115–10125. (e) Rossell, O.; Seco, M.; Segalés, G.; Alvarez, S.; Pellinghelli, M. A.; Tiripicchio, A. (PPh4)[Mn3(CO)12(μ3-H)(μ-Hg{Mo(CO)3(η5-C5H5)})]: The First Example of a Mercury-Containing Planar Triangulated Rhomboidal Metal Cluster. Organometallics 1994, 13, 2205–2212. (f) Abel, E. W.; Towle, I. D. H.; Cameron, T. S.; Cordes, R. E. Syntheses of Nonacarbonylbis(μ3-ethoxy)(μ2-halogeno)trimanganese Complexes, the Crystal Structures of the Fluoride and Iodide, and the Crystal Structure of Octacarbonyl(dimethylphenylphosphine)bis(μ3-ethoxy)(μ2-ethoxy)trimanganese. J. Chem. Soc., Dalton Trans. 1979, 1943–1949. (g) Fraser, R.; van Rooyen, P. H.; Landman, M. Synthesis, Structure and DFT Study of Cymantrenyl Fischer Carbene Complexes of Group VI and VII Transition Metals. J. Mol. Struct. 2016, 1105, 178–185.
    (4) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Recent Progress in the Chemistry of Anionic Groups 6–8 Carbonyl Chalcogenide Clusters. Coord. Chem. Rev. 2012, 256, 637–694, and references therein. (b) Heinl, S.; Kiefer, K.; Balázs, G.; Wickleder, C.; Scheer, M. The Synthesis of the Heterocubane Cluster [{CpMn}4(μ3-P)4] as a Tetrahedral Shaped Starting Material for the Formation of Polymeric Coordination Compounds. Chem. Commun. 2015, 51, 13474–13477. (c) Schollenberger, M.; Nuber, B.; Ziegler, M. L. Idealized Pentagonal-Planar Coordination for Indium in [(μ5-In){Mn(CO)4}5]2–. Angew. Chem. Int. Ed. Engl. 1992, 31, 350–351. (d) Elschenbroich, C.; Six, J.; Harms, K. On a Novel Coordination Mode of Phosphinine C5H5P. Chem. Commun. 2006, 3429–3431. (e) Rosalky, J. M.; Metz, B.; Mathey, F.; Weiss, R. Metal-Phosphole and -Phospholyl Complexes. Crystal and Molecular Structures of (1-tert-Butyl-3,4-dimethylphosphole)heptacarbonyldimanganese and (3,4-Dimethylphospholyl)undeca-carbonyltrimanganese. Inorg. Chem. 1977, 16, 3307−3311. (f) Low, P. M. N.; Tan, A. L.; Hor, T. S. A.; Wen, Y.-S.; Liu, L.-K. Substituted Metal Carbonyls. 27.1 Synthesis, Structures, and Metal−Metal Bonding of a Ferrocenylphosphine exo-Bridged Cluster with Two Heterometallic Triangles, [AuMn2(CO)8(µ-PPh2)]2(µ-dppf), and a Twisted-Bowtie Cluster, PPN+[Au{Mn2(CO)8(µ-PPh2)}2]− (dppf = 1,1’-Bis(diphenylphosphino)ferrocene). Organometallics 1996, 15, 2595−2603. (g) Carreño, R.; Riera, V.; Ruiz, M. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. Reactivity of [Mn2(µ-H)2(CO)6(µ-tedip)] (tedip = (EtO)2POP(OEt)2) with Group 11 Alkynyl Compounds. X-ray Structures of [Ag2Mn4(µ-H)6(CO)12(µ-tedip)2] and [AuMn4(µ-H)5(CO)12(µ-tedip)2]. Organometallics 1994, 13, 993−1004. (h) Schatz, W.; Neumann, H.-P.; Nuber, B.; Kanellakopulos, B.; Ziegler, M. L. Darstellung von dreikernigen Carbonylmanganaten sowie deren Reaktionsprodukten mit InCI3; Röntgenstrukturanalysen von K3[Mn3(μ-CO)2(CO)10], [(C6H5)4As]2[(μ-H)Mn3(μ-CO)2(CO)10], [{(C6H5)3P}2N]2[(μ-H)Mn3(CO)12], [(C6H5)4As]2[{(μ-H)Mn3(CO)12}2(μ4-In)] und [(C6H5)4As]2[{(μ-H)Mn3(CO)12}(μ3-In)-
    {Mn(CO)5}Cl]. Chem. Ber. 1991, 124, 453–463. (i) Kneuper, H.-J.; Herdtweck, E.; Herrmann, W. A. Multiple Bonds between Transition Metals and Main Group Elements: “Naked” Lead in a Planar Environment. J. Am. Chem. Soc. 1987, 109, 2508–2509. (j) Seyerl, J. V.; Wohlfahrt, L.; Huttner, G. Dicarbonyl(cyclopentadienyl)mangan-Cluster mit SbCl- und SbCl2-Brückenliganden. Chem. Ber. 1980, 113, 2868–2875.
    (5) (a) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Mn2(CO)6(µ-CO)(µ-S2): The Simplest Disulfide of Manganese Carbonyl. Inorg. Chem. 2001, 40, 5322−5323. (b) Adams, R. D.; Captain, B.; Kwon, O.-S.; Miao, S. New Disulfido Molybdenum−Manganese Complexes Exhibit Facile Addition of Small Molecules to the Sulfur Atoms. Inorg. Chem. 2003, 42, 3356–3365. (c) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Disulfides of Manganese Carbonyl. Synthesis of Mn2(CO)7(µ-S2) and Its Reactions with Tertiary Phosphines and Arsines. Inorg. Chem. 2002, 41, 6281−6290. (d) Li, H.; Yu, K.; Watson, E. J.; Virkaitis, K. L.; D’Acchioli, J. S.; Carpenter, G. B.; Sweigart, D. A.; Czech, P. T.; Overly, K. R.; Coughlin, F. Models for Deep Hydrodesulfurization of Alkylated Benzothiophenes. Reductive Cleavage of C−S Bonds Mediated by Precoordination of Manganese Tricarbonyl to the Carbocyclic Ring. Organometallics 2002, 21, 1262–1270. (e) Zhang, X.; Dullaghan, C. A.; Carpenter, G. B.; Sweigart, D. A.; Meng, Q. Insertion of Manganese into a C–S Bond of Dibenzothiophene: A Model for Homogeneous Hydrodesulfurization. Chem. Commun. 1998, 93–94. (f) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Syntheses and X-ray Structures of a Series of Chalcogen-Containing Manganese Carbonylates [E2Mn3(CO)9]−, [E8C2Mn2(CO)6]2−, and [E2Mn4(CO)12]2− (E = Se, S). Inorg. Chem. 1997, 36, 4421–4425. (g) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. 5-Substituted l,3,4-Oxathiazol-2-ones as a Sulfur Source for a Sulfido Cluster: Synthesis and Molecular Structure of the 48-Electron Equilateral Triangular Cluster Anion [Mn3(μ3-S)2(CO)9]−. Organometallics 1993, 12, 1009–1011. (h) Lau, P.; Braunwarth, H.; Huttner, G.; Günauer, D.; Evertz, K.; Imhof, W.; Emmerich, C.; Zsolnai, L. Oxidative Transformation of [RCp(CO)2MnSR]• Radicals into "Inidene" Compounds [RCp(CO)2Mn]2SR+. Organometallics 1991, 10, 3861−3873. (i) Küllmer, V.; Röttinger, E.; Vahrenkamp, H. Preparation and Crystal Structure of [Mn4S4(CO)15]; Oxidation at Sulphur of [{(CO)4Mn-S-SnMe3}2]. J. Chem. Soc., Chem. Commun. 1977, 782−783. (j) Alonso, F. J. G.; Sanz, M. G.; Riera, V.; Granda, S. G.; Carreño, E. P. Facile Deprotonation of the Hydrogensulfido Ligand in [Mn2(μ-H)(μ-SH)(CO)6-
    (diphosphine)] Complexes. J. Chem. Soc., Dalton Trans. 1992, 545−548.
    (6) (a) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, H.-W. Selective Insertion of Oxygen and Selenium into an Electron-Precise Paramagnetic Selenium−Manganese Carbonyl Cluster [Se6Mn6(CO)18]4−. J. Am. Chem. Soc. 2010, 132, 4032–4033. (b) Ho, C.-H.; Chu, Y.-Y.; Lin, C.-N.; Chen, H.-W.; Huang, C.-Y.; Shieh, M. Selenium−Manganese Carbonyl Clusters: Synthesis, Reversible Transformation, Electrochemical Properties, and Theoretical Calculations. Organometallics 2010, 29, 4396–4405. (c) Seidel, R.; Schnautz, B.; Henkel, G. [Mn(CO)5]−, the First Square-Pyramidal Pentacarbonyl Complex in the Complex Salt [Ph4P][Mn(CO)5], and [Mn3Se2(CO)9]2−, the First Mixed Carbonyl-Selenido Complex of Manganese. Angew. Chem. Int. Ed. Engl. 1996, 35, 1710–1712. (d) Liaw, W.-F.; Chuang, C.-Y.; Lee, W.-Z.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. An Approach to Heterometallic Complexes with Selenolate and Tellurolate Ligands: Crystal Structures of cis-[Mn(CO)4(SePh)2]−, [(CO)3Mn(µ-SeMe)3Mn(CO)3]−, (CO)4Mn(µ-TePh)2Co(CO)(µ-
    SePh)3Mn(CO)3, and (CO)3Mn(µ-SePh)3Fe(CO)3. Inorg. Chem. 1996, 35, 2530−2537. (e) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Oxidative Decarbonylation of Dimanganese Decacarbonyl by Polyselenide Anions: Molecular Structure of [(C6H5)4P]2[Mn2(Se2)2(CO)6]∙C4H10O, [(C6H5)4P]2[Mn2(Se4)2(CO)6], and [(C6H5)4P]2[Mn(Se4)2]. Inorg. Chem. 1990, 29, 3134−3138. (f) Adams, R. D.; Kwon, O.-S.; Sanyal, S. Syntheses and Structures of Selenido Dimanganese and Iron−Manganese Carbonyl Cluster Complexes. J. Organomet. Chem. 2003, 681, 258–263. (g) Belletti, D.; Graiff, C.; Massera, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Polynuclear Selenido−Carbonyl Manganese Complexes Derived from Tertiary Phosphine Selenides. Inorg. Chim. Acta 2003, 356, 187–192.
    (7) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. [(TeMe2)Mn(CO)4(μ5-Te)(μ4-Te)Mn4(CO)12]−: A Pentacoordinate Bridging Tellurido Ligand in a Square-Pyramidal Geometry. Angew. Chem. Int. Ed. 1999, 38, 1252–1254. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Tellurium-Bridged Manganese Carbonyl Clusters: Synthesis and Structural Transformations of [Te4Mn3(CO)10]−, [Te2Mn3(CO)9]2−, [Te2Mn3(CO)9]−, and [Te2Mn4(CO)12]2−. Chem. Eur. J. 2001, 7, 3152–3158. (c) Shieh, M.; Liu, Y.-H.; Lin, T.-S.; Lin, Y.-C.; Cheng, W.-K.; Lin, R. Y. Manganese Telluride Carbonyl Complexes: Facile Syntheses and Exotic Properties—Reversible Transformations, Hydrogen Generation, Paramagnetic, and Semiconducting Properties. Inorg. Chem. 2020, 59, 6923−6941. (d) Huang, S. D.; Lai, C. P.; Barnes, C. L. Organometallic Chemistry under Hydro(solvo)thermal Conditions: Synthesis and X-ray Structure of (Ph4P)2[Mn3(CO)9(S2)2(SH)], (Ph4P)[Mn2(CO)6(SH)3], and (Ph4P)2[Mn4(CO)13(Te2)3]. Angew. Chem. Int. Ed. Engl. 1997, 36, 1854–1856. (e) Wolf, S.; Feldmann, C. [(Te2)3{Mn(CO)3}2{Mn(CO)4}3]– – A Novel Tellurium-Manganese Carbonyl with Ufosane-Like Structure. Z. Anorg. Allg. Chem. 2012, 638, 1787–1791.
    (8) (a) In Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium; Devillanova, F. A., du Mont, W.-W., Eds.; RSC Publishing: Cambridge, 2nd edn, 2013. (b) In PATAI’s Chemistry of Functional Groups: The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z. Ed.; Wiley, 2013. (c) In Applications of Chalcogenides: S, Se, and Te; Ahluwalia, G. K. Ed., Springer, 2017. (d) Chhowalla, M.; Liu, Z.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.
    (9) (a) Mathur, P.; Manimaran, B.; Trivedi, R.; Hossain, M. M.; Arabatti, M. Synthesis, Spectroscopic and Structural Characterisation of {(CO)3Fe(μ-CH2)Se}2 and (CO)6Fe2{μ-Se(CH2)nSe} (n = 1, 2). J. Organomet. Chem. 1996, 515, 155–162. (b) Black, J. R.; Champness, N. R.; Levason, W.; Reid, G. Self-Assembly of Ribbons and Frameworks Containing Large Channels Based upon Methylene-Bridged Dithio-, Diseleno-, and Ditelluroethers. Inorg. Chem. 1996, 35, 4432–4438.
    (10) In Electron Paramagnetic Resonance of Exchange Coupled Systems; Bencini, A., Gatteschi, D., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 1990.
    (11) (a) Hadley, R. C.; Gagnon, D. M.; Ozarowski, A.; Britt, R. D.; Nolan, E. M. Murine Calprotectin Coordinates Mn(II) at a Hexahistidine Site with Ca(II)-Dependent Affinity. Inorg. Chem. 2019, 58, 13578–13590. (b) Ng, H. N.; Calvo, C. Crystal Structure of and Electron Spin Resonance of Mn2+ in MgV2O6. Can. J. Chem. 1972, 50, 3619–3624.
    (12) Shieh M.; Cheng, W.-K. unpublished results.
    (13) (a) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824. (b) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.
    (14) (a) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (b) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
    (15) Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096.
    (16) In Electrochemical Methods; Fundamentals and Applications, 2nd edn; Bard, A. J., Faulkner, L. R., Eds.; John Wiley & Sons: New York, 2001; pp. 291.
    (17) (a) Braga, D.; Grepioni, F. Hydrogen-Bonding Interactions with the CO Ligand in the Solid State. Acc. Chem. Res. 1997, 30, 81−87. (b) Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. Hydrogen Bonding in Organometallic Crystals. 2. C–H···O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. J. Am. Chem. Soc. 1995, 117, 3156−3166.
    (18) (a) Kubelka, P.; Munk, F. Ein Beitrag zür Optik der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. (b) Tauc, J. Absorption Edge and Internal Electric Fields in Amorphous Semiconductors. Mater. Res. Bull. 1970, 5, 721–729.
    (19) (a) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. (b) Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764.
    (20) In The Manipulation of Air-Sensitive Compounds; Shriver, D. F., Drezdon, M. A., Eds.; Wiley-VCH: New York, 1986.
    (21) Shieh M.; Ho, C.-H. unpublished results.
    (22) Shieh M.; Lin, R. Y. unpublished results.
    (23) SADABS; Bruker AXS Inc.: Madison, WI, 2003.
    (24) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112−122.
    (25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
    (26) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735−746.
    (27) (a) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near‐Hartree–Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899−926.
    (28) (a) Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0, http://avogadro.openmolecules.net/. (b) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4, 17.
    (29) Gorelsky, S. I. AOMix. http://www.sg-chem.net/.
    (30) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
    (31) Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473.
    (32) (a) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. (b) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic Effects in Gold Chemistry. I. Diatomic Gold Compounds. J. Chem. Phys. 1989, 91, 1762−1774. (c) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123−141. (d) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80, 1431−1441.
    (33) (a) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995−2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669−681.
    (34) Assefa, M. K.; Devera, J. L.; Brathwaite, A. D.; Mosley, J. D.; Duncan, M. A. Vibrational Scaling Factors for Transition Metal Carbonyls. Chem. Phys. Lett. 2015, 640, 175−179.
    (35) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580−592.
    (36) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33−38.
    (37) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. Aqueous Electrochemistry of a C60-Bearing Artificial Lipid Bilayer Membrane Film Immobilized on an Electrode Surface: Thermodynamics for the Binding of Tetraalkylammonium Ion to the Fullerene Anion. J. Phys. Chem. B 1999, 103, 304–308.
    Supporting information
    (1) Boudreaux, E. A.; Mulay, L. N. In Theory and Applications of Molecular Paramagnetism; Wiley-Interscience: New York, 1976.
    (2) Drago, R. S. In Physical Methods for Chemists, 2nd ed; Saunder College Publishing: Mexico, 1992.

    3. Te/Mn/CO System
    (1) (a) Duboc, C. Determination and Prediction of the Magnetic Anisotropy of Mn Ions. Chem. Soc. Rev. 2016, 45, 5834–5847. (b) Young, K. J.; Brennan, B. J.; Tagore, R.; Brudvig, G. W. Photosynthetic Water Oxidation: Insights from Manganese Model Chemistry. Acc. Chem. Res. 2015, 48, 567−574. (c) Thompson, L. K.; Dawe, L. N. Magnetic Properties of Transition Metal (Mn(II), Mn(III), Ni(II), Cu(II)) and Lanthanide (Gd(III), Dy(III), Tb(III), Eu(III), Ho(III), Yb(III)) Clusters and [nxn] Grids: Isotropic Exchange and SMM Behaviour. Coord. Chem. Rev. 2015, 289–290, 13–31. (d) Yang, C.-I.; Zhang, Z.-Z.; Lin, S.-B. A Review of Manganese-Based Molecular Magnets and Supramolecular Architectures from Phenolic Oximes. Coord. Chem. Rev. 2015, 289–290, 289–314. (e) Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. A Synthetic Mn4Ca-Cluster Mimicking the Oxygen-Evolving Center of Photosynthesis. Science 2015, 348, 690–693. (f) Cahiez, G.; Duplais, C.; Buendia, J. Chemistry of Organomanganese(II) Compounds. Chem. Rev. 2009, 109, 1434–1476. (g) Hu, Y.; Zhou, B.; Wang, C. Inert C−H Bond Transformations Enabled by Organometallic Manganese Catalysis. Acc. Chem. Res. 2018, 51, 816−827.
    (2) (a) In The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley: New York, 1990. (b) In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, Germany, 1999. (c) Ansari, M. A.; Ibers, J. A. Soluble Selenides and Tellurides. Coord. Chem. Rev. 1990, 100, 223−266. (d) Kanatzidis, M. G.; Huang, S.-P. Coordination Chemistry of Heavy Polychalcogenide Ligands. Coord. Chem. Rev. 1994, 130, 509−621. (e) Richmond, M. G. Annual Survey of Organometallic Metal Cluster Chemistry for the Year 2003. Coord. Chem. Rev. 2005, 249, 2763−2786. (f) Roof, L. C.; Kolis, J. W. New Developments in the Coordination Chemistry of Inorganic Selenide and Telluride Ligands. Chem. Rev. 1993, 93, 1037−1080. (g) Herrmann, W. A.; Weichmann, J.; Serrano, R.; Blechschmitt, K.; Pfisterer, H.; Ziegler, M. L. Seleno- and Telluroformaldehyde as Bridging Ligands in Organometallic Complexes. Angew. Chem. Int. Ed. Engl. 1983, 22, 314−315.
    (3) (a) Kong, G.; Harakas, G. N.; Whittlesey, B. R. An Unusual Transition Metal Cluster Containing a Seven Metal Atom Plane. Syntheses and Crystal Structures of [Mn][Mn7(THF)6(CO)12]2, Mn3(THF)2(CO)10, and [Mn(THF)6][Mn(CO)5]2. J. Am. Chem. Soc. 1995, 117, 3502–3509. (b) Bau, R.; Kirtley, S. W.; Sorrell, T. N.; Winarko, S. Preparation and Structure Determination of the [Mn3(CO)14]– Anion. Comments on Staggered vs. Eclipsed Carbonyl Groups and Linear vs. Bent M–M–M and M–H–M Bonds. J. Am. Chem. Soc. 1974, 96, 988–993. (c) Kirtley, S. W.; Olsen, J. P.; Bau, R. Location of the Hydrogen Atoms in H3Mn3(CO)12. A Crystal Structure Determination. J. Am. Chem. Soc. 1973, 95, 4532–4536. (d) Poplaukhin, P. V.; Chen, X.; Meyers, E. A.; Shore, S. G. Lanthanide−Transition Metal Carbonyl Complexes: Condensation of Solvent-Separated Ion-Pair Compounds into Extended Structures. Inorg. Chem. 2006, 45, 10115–10125. (e) Rossell, O.; Seco, M.; Segalés, G.; Alvarez, S.; Pellinghelli, M. A.; Tiripicchio, A. (PPh4)[Mn3(CO)12(μ3-H)(μ-Hg{Mo(CO)3(η5-C5H5)})]: The First Example of a Mercury-Containing Planar Triangulated Rhomboidal Metal Cluster. Organometallics 1994, 13, 2205–2212. (f) Abel, E. W.; Towle, I. D. H.; Cameron, T. S.; Cordes, R. E. Syntheses of Nonacarbonylbis(μ3-ethoxy)(μ2-halogeno)trimanganese Complexes, the Crystal Structures of the Fluoride and Iodide, and the Crystal Structure of Octacarbonyl(dimethylphenylphosphine)bis(μ3-ethoxy)(μ2-ethoxy)trimanganese. J. Chem. Soc., Dalton Trans. 1979, 1943–1949. (g) Fraser, R.; van Rooyen, P. H.; Landman, M. Synthesis, Structure and DFT Study of Cymantrenyl Fischer Carbene Complexes of Group VI and VII Transition Metals. J. Mol. Struct. 2016, 1105, 178–185.
    (4) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Recent Progress in the Chemistry of Anionic Groups 6–8 Carbonyl Chalcogenide Clusters. Coord. Chem. Rev. 2012, 256, 637–694, and references therein. (b) Heinl, S.; Kiefer, K.; Balázs, G.; Wickleder, C.; Scheer, M. The Synthesis of the Heterocubane Cluster [{CpMn}4(μ3-P)4] as a Tetrahedral Shaped Starting Material for the Formation of Polymeric Coordination Compounds. Chem. Commun. 2015, 51, 13474–13477. (c) Schollenberger, M.; Nuber, B.; Ziegler, M. L. Idealized Pentagonal-Planar Coordination for Indium in [(μ5-In){Mn(CO)4}5]2–. Angew. Chem. Int. Ed. Engl. 1992, 31, 350–351. (d) Elschenbroich, C.; Six, J.; Harms, K. On a Novel Coordination Mode of Phosphinine C5H5P. Chem. Commun. 2006, 3429–3431. (e) Rosalky, J. M.; Metz, B.; Mathey, F.; Weiss, R. Metal-Phosphole and -Phospholyl Complexes. Crystal and Molecular Structures of (1-tert-Butyl-3,4-dimethylphosphole)heptacarbonyldimanganese and (3,4-Dimethylphospholyl)undeca-carbonyltrimanganese. Inorg. Chem. 1977, 16, 3307−3311. (f) Low, P. M. N.; Tan, A. L.; Hor, T. S. A.; Wen, Y.-S.; Liu, L.-K. Substituted Metal Carbonyls. 27.1 Synthesis, Structures, and Metal−Metal Bonding of a Ferrocenylphosphine exo-Bridged Cluster with Two Heterometallic Triangles, [AuMn2(CO)8(µ-PPh2)]2(µ-dppf), and a Twisted-Bowtie Cluster, PPN+[Au{Mn2(CO)8(µ-PPh2)}2]− (dppf = 1,1’-Bis(diphenylphosphino)ferrocene). Organometallics 1996, 15, 2595−2603. (g) Carreño, R.; Riera, V.; Ruiz, M. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. Reactivity of [Mn2(µ-H)2(CO)6(µ-tedip)] (tedip = (EtO)2POP(OEt)2) with Group 11 Alkynyl Compounds. X-ray Structures of [Ag2Mn4(µ-H)6(CO)12(µ-tedip)2] and [AuMn4(µ-H)5(CO)12(µ-tedip)2]. Organometallics 1994, 13, 993−1004. (h) Schatz, W.; Neumann, H.-P.; Nuber, B.; Kanellakopulos, B.; Ziegler, M. L. Darstellung von dreikernigen Carbonylmanganaten sowie deren Reaktionsprodukten mit InCI3; Röntgenstrukturanalysen von K3[Mn3(μ-CO)2(CO)10], [(C6H5)4As]2[(μ-H)Mn3(μ-CO)2(CO)10], [{(C6H5)3P}2N]2[(μ-H)Mn3(CO)12], [(C6H5)4As]2[{(μ-H)Mn3(CO)12}2(μ4-In)] und [(C6H5)4As]2[{(μ-H)Mn3(CO)12}(μ3-In){Mn(CO)5}Cl]. Chem. Ber. 1991, 124, 453–463. (i) Kneuper, H.-J.; Herdtweck, E.; Herrmann, W. A. Multiple Bonds between Transition Metals and Main Group Elements: “Naked” Lead in a Planar Environment. J. Am. Chem. Soc. 1987, 109, 2508–2509. (j) Seyerl, J. V.; Wohlfahrt, L.; Huttner, G. Dicarbonyl(cyclopentadienyl)mangan-Cluster mit SbCl- und SbCl2-Brückenliganden. Chem. Ber. 1980, 113, 2868–2875.
    (5) (a) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Mn2(CO)6(µ-CO)(µ-S2): The Simplest Disulfide of Manganese Carbonyl. Inorg. Chem. 2001, 40, 5322−5323. (b) Adams, R. D.; Captain, B.; Kwon, O.-S.; Miao, S. New Disulfido Molybdenum−Manganese Complexes Exhibit Facile Addition of Small Molecules to the Sulfur Atoms. Inorg. Chem. 2003, 42, 3356–3365. (c) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Disulfides of Manganese Carbonyl. Synthesis of Mn2(CO)7(µ-S2) and Its Reactions with Tertiary Phosphines and Arsines. Inorg. Chem. 2002, 41, 6281−6290. (d) Li, H.; Yu, K.; Watson, E. J.; Virkaitis, K. L.; D’Acchioli, J. S.; Carpenter, G. B.; Sweigart, D. A.; Czech, P. T.; Overly, K. R.; Coughlin, F. Models for Deep Hydrodesulfurization of Alkylated Benzothiophenes. Reductive Cleavage of C−S Bonds Mediated by Precoordination of Manganese Tricarbonyl to the Carbocyclic Ring. Organometallics 2002, 21, 1262–1270. (e) Zhang, X.; Dullaghan, C. A.; Carpenter, G. B.; Sweigart, D. A.; Meng, Q. Insertion of Manganese into a C–S Bond of Dibenzothiophene: A Model for Homogeneous Hydrodesulfurization. Chem. Commun. 1998, 93–94. (f) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Syntheses and X-ray Structures of a Series of Chalcogen-Containing Manganese Carbonylates [E2Mn3(CO)9]−, [E8C2Mn2(CO)6]2−, and [E2Mn4(CO)12]2− (E = Se, S). Inorg. Chem. 1997, 36, 4421–4425. (g) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. 5-Substituted l,3,4-Oxathiazol-2-ones as a Sulfur Source for a Sulfido Cluster: Synthesis and Molecular Structure of the 48-Electron Equilateral Triangular Cluster Anion [Mn3(μ3-S)2(CO)9]−. Organometallics 1993, 12, 1009–1011. (h) Lau, P.; Braunwarth, H.; Huttner, G.; Günauer, D.; Evertz, K.; Imhof, W.; Emmerich, C.; Zsolnai, L. Oxidative Transformation of [RCp(CO)2MnSR]• Radicals into "Inidene" Compounds [RCp(CO)2Mn]2SR+. Organometallics 1991, 10, 3861−3873. (i) Küllmer, V.; Röttinger, E.; Vahrenkamp, H. Preparation and Crystal Structure of [Mn4S4(CO)15]; Oxidation at Sulphur of [{(CO)4Mn-S-SnMe3}2]. J. Chem. Soc., Chem. Commun. 1977, 782−783. (j) Alonso, F. J. G.; Sanz, M. G.; Riera, V.; Granda, S. G.; Carreño, E. P. Facile Deprotonation of the Hydrogensulfido Ligand in [Mn2(μ-H)(μ-SH)(CO)6(diphosphine)] Complexes. J. Chem. Soc., Dalton Trans. 1992, 545−548.
    (6) (a) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, H.-W. Selective Insertion of Oxygen and Selenium into an Electron-Precise Paramagnetic Selenium−Manganese Carbonyl Cluster [Se6Mn6(CO)18]4−. J. Am. Chem. Soc. 2010, 132, 4032–4033. (b) Ho, C.-H.; Chu, Y.-Y.; Lin, C.-N.; Chen, H.-W.; Huang, C.-Y.; Shieh, M. Selenium−Manganese Carbonyl Clusters: Synthesis, Reversible Transformation, Electrochemical Properties, and Theoretical Calculations. Organometallics 2010, 29, 4396–4405. (c) Seidel, R.; Schnautz, B.; Henkel, G. [Mn(CO)5]−, the First Square-Pyramidal Pentacarbonyl Complex in the Complex Salt [Ph4P][Mn(CO)5], and [Mn3Se2(CO)9]2−, the First Mixed Carbonyl-Selenido Complex of Manganese. Angew. Chem. Int. Ed. Engl. 1996, 35, 1710–1712. (d) Liaw, W.-F.; Chuang, C.-Y.; Lee, W.-Z.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. An Approach to Heterometallic Complexes with Selenolate and Tellurolate Ligands: Crystal Structures of cis-[Mn(CO)4(SePh)2]−, [(CO)3Mn(µ-SeMe)3Mn(CO)3]−, (CO)4Mn(µ-TePh)2Co(CO)(µ-SePh)3Mn(CO)3, and (CO)3Mn(µ-SePh)3Fe(CO)3. Inorg. Chem. 1996, 35, 2530−2537. (e) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Oxidative Decarbonylation of Dimanganese Decacarbonyl by Polyselenide Anions: Molecular Structure of [(C6H5)4P]2[Mn2(Se2)2(CO)6]∙C4H10O, [(C6H5)4P]2[Mn2(Se4)2(CO)6], and [(C6H5)4P]2[Mn(Se4)2]. Inorg. Chem. 1990, 29, 3134−3138. (f) Adams, R. D.; Kwon, O.-S.; Sanyal, S. Syntheses and Structures of Selenido Dimanganese and Iron−Manganese Carbonyl Cluster Complexes. J. Organomet. Chem. 2003, 681, 258–263. (g) Belletti, D.; Graiff, C.; Massera, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Polynuclear Selenido−Carbonyl Manganese Complexes Derived from Tertiary Phosphine Selenides. Inorg. Chim. Acta 2003, 356, 187–192.
    (7) (a) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. [(TeMe2)Mn(CO)4(μ5-Te)(μ4-Te)Mn4(CO)12]−: A Pentacoordinate Bridging Tellurido Ligand in a Square-Pyramidal Geometry. Angew. Chem. Int. Ed. 1999, 38, 1252–1254. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Tellurium-Bridged Manganese Carbonyl Clusters: Synthesis and Structural Transformations of [Te4Mn3(CO)10]−, [Te2Mn3(CO)9]2−, [Te2Mn3(CO)9]−, and [Te2Mn4(CO)12]2−. Chem. Eur. J. 2001, 7, 3152–3158. (c) Huang, S. D.; Lai, C. P.; Barnes, C. L. Organometallic Chemistry under Hydro(solvo)thermal conditions: Synthesis and X-ray Structure of (Ph4P)2[Mn3(CO)9(S2)2(SH)], (Ph4P)[Mn2(CO)6(SH)3], and (Ph4P)2[Mn4(CO)13(Te2)3]. Angew. Chem. Int. Ed. Engl. 1997, 36, 1854–1856. (d) Wolf, S.; Feldmann, C. [(Te2)3{Mn(CO)3}2{Mn(CO)4}3]– – A Novel Tellurium-Manganese Carbonyl with Ufosane-Like Structure. Z. Anorg. Allg. Chem. 2012, 638, 1787–1791.
    (8) (a) Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752−2875. (b) Luo, Y.-H.; Dong, L.-Z.; Liu, J.; Li, S.-L.; Lan, Y.-Q. From Molecular Metal Complex to Metal-Organic Framework: The CO2 Reduction Photocatalysts with Clear and Tunable Structure. Coord. Chem. Rev. 2019, 390, 86–126. (c) Sinopoli, A.; Porte, N. T. L.; Martinez, J. F.; Wasielewski, M. R.; Sohail, M. Manganese Carbonyl Complexes for CO2 Reduction. Coord. Chem. Rev. 2018, 365, 60–74. (d) Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. J. Am. Chem. Soc. 2019, 141, 6569−6582. (e) Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R.; Grills, D. C.; Ertem, M. Z.; Rochford, J. Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes. J. Am. Chem. Soc. 2017, 139, 2604−2618. (f) Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction. Angew. Chem. Int. Ed. 2011, 50, 9903–9906. (g) Matson, B. D.; McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M.; Sarangi, R. Effect of Redox Active Ligands on the Electrochemical Properties of Manganese Tricarbonyl Complexes. Inorg. Chem. 2019, 58, 7453−7465. (h) Torralba-Peñalver, E.; Luo, Y.; Compain, J.-D.; Chardon-Noblat, S.; Fabre, B. Selective Catalytic Electroreduction of CO2 at Silicon Nanowires (SiNWs) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs. ACS Catal. 2015, 5, 6138−6147. (i) Martinez, J. F.; Porte, N. T. L.; Young, R. M.; Sinopoli, A.; Sohail, M.; Wasielewski, M. R. Direct Observation of the Photoreduction Products of Mn(NDIbpy)(CO)3X CO2 Reduction Catalysts Using Femtosecond Transient IR Spectroscopy. J. Phys. Chem. C 2019, 123, 6416−6426. (j) Neri, G.; Donaldson, P. M.; Cowan, A. J. In situ Study of the Low Overpotential “Dimer Pathway” for Electrocatalytic Carbon Dioxide Reduction by Manganese Carbonyl Complexes. Phys. Chem. Chem. Phys. 2019, 21, 7389−7397. (k) Wang, X.; Ma, H.; Meng, C.; Chen, D.; Huang, F. A Rational Design of Manganese Electrocatalysts for Lewis Acid-Assisted Carbon Dioxide Reduction. Phys. Chem. Chem. Phys. 2019, 21, 8849−8855. (l) Li, J.; Zhang, M.; Pan, X.; Zhang, Z.; Perrier, S.; Zhu, J.; Zhu, X. Visible Light Induced Controlled Cationic Polymerization by in situ Generated Catalyst from Manganese Carbonyl. Chem. Commun. 2019, 55, 7045−7048.
    (9) (a) Hieber, W.; Gruber, J. Zur Kenntnis der Eisencarbonylchalkogenide. Z. Anorg. Allg. Chem. 1958, 296, 91–103. (b) Whitmire, K. H. Transition Metal Complexes of the Naked Pnictide Elements. Coord. Chem. Rev. 2018, 376, 114–195. (c) Mathur, P. Chalcogen-Bridged Metal-Carbonyl Complexes. Adv. Organomet. Chem. 1997, 41, 243−314. (d) Shieh, M.; Yu, C.-C. Ternary Copper-Incorporated Group 8 (Ru or Fe) Carbonyl Chalcogenide Complexes and Polymers: From Syntheses to Applications. J. Organomet. Chem. 2017, 849−850, 219−227, and references therein. (e) Shieh, M.; Liu, Y.-H.; Huang, C.-Y.; Chen, S.-W.; Cheng, W.-K.; Chien, L.-T. The First Naked Bismuth−Chalcogen Metal Carbonyl Clusters: Extraordinary Nucleophilicity of the Bi Atom and Semiconducting Characteristics. Inorg. Chem. 2019, 58, 6706−6721. (f) Shieh, M.; Yu, C.-C.; Hsing, K.-J.; Chang, W.-J. A Multiply Bonded Trigonal-Planar Bismuth(III) Complex: Prodigious Lewis Acidity, Solvatochromism, Etherification, and Semiconducting Characteristics. Chem. Eur. J. 2017, 23, 11677–11683. (g) Shieh, M.; Yu, C.-C.; Miu, C.-Y.; Kung, C.-H.; Huang, C.-Y.; Liu, Y.-H.; Liu, H.-L.; Shen, C.-C. Semiconducting Coordination Polymers Based on the Predesigned Ternary Te−Fe−Cu Carbonyl Cluster and Conjugation-Interrupted Dipyridyl Linkers. Chem. Eur. J. 2017, 23, 11261–11271.
    (10) (a) Adams, R. D.; Kwon, O.-S.; Miao, S. Disulfido Metal Carbonyl Complexes Containing Manganese. Acc. Chem. Res. 2005, 38, 183–190, and references therein. (b) Adams, R. D.; Miao, S. Metal Carbonyl Derivatives of 1,4-Quinone and 1,4-Hydroquinone. J. Am. Chem. Soc. 2004, 126, 5056–5057. (c) Adams, R. D.; Miao, S.; Smith, M. D.; Farach, H.; Webster, C. E.; Manson, J.; Hall, M. B. Nickel−Manganese Sulfido Carbonyl Cluster Complexes. Synthesis, Structure, and Properties of the Unusual Paramagnetic Complexes Cp2Ni2Mn(CO)3(µ3-E)2, E = S, Se. Inorg. Chem. 2004, 43, 2515−2525. (d) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Reactions of Thioethers with Mn2(CO)7(µ-S2) Proceed with CO Displacement and Insertion of the Sulfur Atom into the Mn−Mn Bond. Inorg. Chem. 2002, 41, 5525−5529. (e) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Insertion of a Bis(phosphine)platinum Group into the S−S Bond of Mn2(CO)7(µ-S2). Inorg. Chem. 2002, 41, 1658−1661. (f) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Insertion of Cyclopentadienylmetal Groups into the S−S Bond of Mn2(CO)7(µ-S2). Organometallics 2002, 21, 1960−1965.
    (11) (a) In Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium; Devillanova, F. A., du Mont, W.-W., Eds.; RSC Publishing: Cambridge, 2nd edn, 2013. (b) In PATAI’s Chemistry of Functional Groups: The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z. Ed.; Wiley, 2013. (c) In Applications of Chalcogenides: S, Se, and Te; Ahluwalia, G. K. Ed., Springer, 2017. (d) Chhowalla, M.; Liu, Z.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.
    (12) (a) Liaw, W.-F.; Ou, D.-S.; Li, Y.-S.; Lee, W.-Z.; Chuang, C.-Y.; Lee, Y.-P.; Lee, G.-H.; Peng, S.-M. Oxidative Addition of Diorganyl Ditellurides to [Mn(CO)5]–: Crystal Structures of cis-[Na-18-crown-6-ether∙2THF][Mn(CO)4(TePh)2], [PPN][(CO)3Mn(μ-TePh)3Mn(CO)3], (CO)3Mn(μ-TePh)3Co(CO)(μ-TePh)2Mn(CO)4, and (CO)4Mn(μ-TePh)2Mn(CO)4. Inorg. Chem. 1995, 34, 3747–3754. (b) Shieh, M.; Yu, C.-H.; Chu, Y.-Y.; Guo, Y.-W.; Huang, C.-Y.; Hsing, K.-J.; Chen, P.-C.; Lee, C.-F. Trigonal-Bipyramidal and Square-Pyramidal Chromium−Manganese Chalcogenide Clusters, [E2CrMn2(CO)n]2– (E = S, Se, Te; n = 9, 10): Synthesis, Electrochemistry, UV/Vis Absorption, and Computational Studies. Chem. Asian J. 2013, 8, 963–973.
    (13) (a) Mingos, D. M. P.; Wales, D. J. In Introduction to Cluster Chemistry; Prentice Hall, Englewood Cliffs, 1990. (b) Wade, K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66.
    (14) In Electron Paramagnetic Resonance of Exchange Coupled Systems; Bencini, A., Gatteschi, D., Eds.; Springer-Verlag: Berlin Heidelberg, Germany, 1990.
    (15) (a) Hadley, R. C.; Gagnon, D. M.; Ozarowski, A.; Britt, R. D.; Nolan, E. M. Murine Calprotectin Coordinates Mn(II) at a Hexahistidine Site with Ca(II)-Dependent Affinity. Inorg. Chem. 2019, 58, 13578–13590. (b) Ng, H. N.; Calvo, C. Crystal Structure of and Electron Spin Resonance of Mn2+ in MgV2O6. Can. J. Chem. 1972, 50, 3619–3624.
    (16) (a) Kar, S.; Saha, K.; Saha, S.; Kirubakaran, B.; Dorcet, V.; Ghosh, S. Trimetallic Cubane-Type Clusters: Transition-Metal Variation as a Probe of the Roots of Hypoelectronic Metallaheteroboranes. Inorg. Chem. 2018, 57, 10896−10905. (b) Chakrahari, K. K. V.; Dhayal, R. S.; Ghosh, S. Synthesis and Characterization of Binuclear μ-oxo and μ-telluro Molybdenum(V) Complexes, [Cp*Mo(O)(μ-Te)]2. Polyhedron 2011, 30, 1048–1054. (c) Yao, S. A.; Martin-Diaconescu, V.; Infante, I.; Lancaster, K. M.; Götz, A. W.; DeBeer, S.; Berry, J. F. Electronic Structure of Ni2E2 Complexes (E = S, Se, Te) and a Global Analysis of M2E2 Compounds: A Case for Quantized E2n− Oxidation Levels with n = 2, 3, or 4. J. Am. Chem. Soc. 2015, 137, 4993−5011. (d) Yao, S.; Xiong, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Milsmann, C.; Driess, M. Facile Dissociation of [(LNiII)2E2] Dichalcogenides: Evidence for [LNiIIE2] Superselenides and Supertellurides in Solution. Angew. Chem. Int. Ed. 2009, 48, 4551–4554. (e) Brennan, J. G.; Siegrist, T.; Stuczynski, S. M.; Steigerwald, M. L. Cluster Intermediates in an Organometallic Synthesis of PdTe. J. Am. Chem. Soc. 1990, 112, 9233–9236. (f) Ma, A. L.; Thoden, J. B.; Dahl, L. F. Synthesis and Structural, Electrochemical and NMR Analysis of the [{Pt(PEt3)2}2Te2]n Series (n= 0, 2+) and the Bicapped Triplatinum [{Pt(PEt3)2}3(μ3-Te)2]2+ Dication: Te−Te Bond Formation in a cyclo-Pt2Te2 Core upon a Chemically Reversible Two-electron Oxidation. J. Chem. Soc., Chem. Commun. 1992, 1516–1518. (g) Knight, L. K.; Piers, W. E.; McDonald, R. Bimolecular Extrusion of TeR2 from β-Diketiminato Supported Scandium Bis-tellurolates. Chem. Eur. J. 2000, 6, 4322−4326. (h) Klein, H.-F.; Gaß, M.; Koch, U.; Eisenmann, B.; Schäfer, H. Reaktionen von Zintl-Phasen mit Trimethylphosphinkomplexen Strukturen mit ebenem Vierring Co2X2 (X = S, Se, Te). Z. Naturforsch. 1988, 43b, 830−838. (i) Zhang, T.; Piers, W. E.; Parvez, M. Synthesis and Characterization of the Binuclear Diamido Titanium Chalcogenides [(Ar)NCH2CH2CH2N(Ar)]2Ti(μ-E)2 (E = Se, Te). Can. J. Chem. 2002, 80, 1524–1529. (j) Eisler, D. J.; Robertson, S. D.; Chivers, T. Gold Complexes of Ditelluridoimidodiphosphinate Ligands-Reversible Oxidation of Au(I) to Au(III) via Insertion of Gold into a Phosphorus-tellurium Bond. Can. J. Chem. 2009, 87, 39–46. (k) Konokhova, A. Y.; Afonin, M. Y.; Sukhikh, T. S.; Konchenko, S. N. Novel Chalcogenide Vanadium Complexes with β-diimine Ligand: Synthesis and Structural Studies. J. Coord. Chem. 2019, 72, 1661−1670.
    (17) (a) Das, B. K.; Kanatzidis, M. G. Solvothermal Synthesis and Structure of Iron Tellurido Carbonyl Clusters. Polyhedron 2000, 19, 1995–2002. (b) Huang, S.-P.; Kanatzidis, M. G. [Ru6(Te2)7(CO)12]2−: Hydrothermal Synthesis of a Novel Ru2+/Te22− Cluster and Its Relationship to RuTe2. J. Am. Chem. Soc. 1992, 114, 5477−5478. (c) Roof, L. C.; Pennington, W. T.; Kolis, J. W. Preparation and Structure of [(W(CO)3)6(Te2)4]2−: A 14-Membered Cluster with a Novel Shape. J. Am. Chem. Soc. 1990, 112, 8172−8174.
    (18) (a) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. (b) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244–13249.
    (19) Crabtree, R. H. Dihydrogen Complexation. Chem. Rev. 2016, 116, 8750−8769.
    (20) In Electrochemical Methods; Fundamentals and Applications, 2nd edn; Bard, A. J., Faulkner, L. R., Eds.; John Wiley & Sons: New York, 2001; pp. 291.
    (21) Melikyan, G. G. Propargyl Radical Chemistry: Renaissance Instigated by Metal Coordination. Acc. Chem. Res. 2015, 48, 1065–1079.
    (22) (a) Braga, D.; Grepioni, F. Hydrogen-Bonding Interactions with the CO Ligand in the Solid State. Acc. Chem. Res. 1997, 30, 81−87. (b) Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. Hydrogen Bonding in Organometallic Crystals. 2. C–H···O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. J. Am. Chem. Soc. 1995, 117, 3156−3166.
    (23) (a) Kubelka, P.; Munk, F. Ein Beitrag zür Optik der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. (b) Tauc, J. Absorption Edge and Internal Electric Fields in Amorphous Semiconductors. Mater. Res. Bull. 1970, 5, 721–729.
    (24) (a) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. (b) Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764.
    (25) In The Manipulation of Air-Sensitive Compounds; Shriver, D. F., Drezdon, M. A., Eds.; Wiley-VCH: New York, 1986.
    (26) SADABS; Bruker AXS Inc.: Madison, WI, 2003.
    (27) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112−122.
    (28) Van der Sluis, P.; Spek, A. L. BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. Acta Crystallogr., Sect. A 1990, A46, 194−201.
    (29) (a) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824. (b) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.
    (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
    (31) (a) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (b) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
    (32) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735−746.
    (33) Wiberg, K. B. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096.
    (34) (a) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near‐Hartree–Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899−926.
    (35) (a) Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0, http://avogadro.openmolecules.net/. (b) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4, 17.
    (36) Gorelsky, S. I. AOMix. http://www.sg-chem.net/.
    (37) (a) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. (b) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic Effects in Gold Chemistry. I. Diatomic Gold Compounds. J. Chem. Phys. 1989, 91, 1762−1774. (c) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123−141. (d) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80, 1431−1441.
    (38) (a) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995−2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669−681.
    (39) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580−592.
    (40) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33−38.
    (41) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
    (42) Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473.
    (43) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. Aqueous Electrochemistry of a C60-Bearing Artificial Lipid Bilayer Membrane Film Immobilized on an Electrode Surface: Thermodynamics for the Binding of Tetraalkylammonium Ion to the Fullerene Anion. J. Phys. Chem. B 1999, 103, 304–308.
    Supporting information
    (1) Van der Sluis, P.; Spek, A. L. BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. Acta Crystallogr., Sect. A 1990, A46, 194−201.
    (2) Boudreaux, E. A.; Mulay, L. N. In Theory and Applications of Molecular Paramagnetism; Wiley-Interscience: New York, 1976.
    (3) Drago, R. S. In Physical Methods for Chemists 2nd ed; Saunder College Publishing: Mexico, 1992.

    4. E/Bi/Fe (E = Te, Se) System
    (1) (a) In Chemistry of Arsenic, Antimony and Bismuth; Norman, N. C, Ed.; Blackie Academic and Professional, London, 1998. (b) In Metal Clusters in Chemistry; Braunstein, P.; Oro, L. A.; Raithby, P. R, Eds.; Wiley-VCH, Weinheim, 1999. (c) In The Chemistry of Metal Cluster Complexes; Shriver, D. F.; Kaesz, H. D.; Adams, R. D, Eds.; Wiley, New York, 1990. (d) Adonin, S. A.; Sokolov, M. N.; Fedin, V. P. Polynuclear Halide Complexes of Bi(III): From Structural Diversity to the New Properties. Coord. Chem. Rev. 2016, 312, 1–21. (e) Jones, J. S.; Pan, B.; Gabbaï, F. P. In Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties; Liddle, S. T, Ed.; Wiley-VCH: Germany, 2015; pp. 519. (f) Ruck, M.; Locherer, F. Reprint of “Coordination Chemistry of Homoatomic Ligands of Bismuth, Selenium and Tellurium”. Coord. Chem. Rev. 2015, 297–298, 208–217. (g) Raţ, C. I.; Silvestru, C.; Breunig, H. J. Hypervalent Organoantimony and -bismuth Compounds with Pendant Arm Ligands. Coord. Chem. Rev. 2013, 257, 818–879. (h) Macdonald, C. L. B.; Ellis, B. D.; Swidan, A. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, 2012, DOI: 10.1002/97811-19951438.eibc0277.pub2. (i) Stavila, V.; Davidovich, R. L.; Gulea, A.; Whitmire, K. H. Bismuth(III) Complexes with Aminopolycarboxylate and Polyaminopolycarboxylate Ligands: Chemistry and Structure. Coord. Chem. Rev. 2006, 250, 2782–2810. (j) Jones, C. Recent Developments in Low Coordination Organo-Antimony and Bismuth Chemistry. Coord. Chem. Rev. 2001, 215, 151–169. (k) Silvestru, C.; Breunig, H. J.; Althaus, H. Structural Chemistry of Bismuth Compounds. I. Organobismuth Derivatives. Chem. Rev. 1999, 99, 3277−3327. (l) Champness, N. R.; Levason, W. Coordination Chemistry of Stibine and Bismuthine Ligands. Coord. Chem. Rev. 1994, 133, 115–217.
    (2) (a) Whitmire, K. H. Transition Metal Complexes of the Naked Pnictide Elements. Coord. Chem. Rev. 2018, 376, 114–195 and references therein. (b) Whitmire, K. H. Main Group-Transition Metal Cluster Compounds of the Group 15 Elements. Adv. Organomet. Chem. 1998, 42, 1–145 and references therein. (c) Whitmire, K. H.; Raghuveer, K. S.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Effect of Charge on Bond Formation and Cleavage in Main-Group-Transition-Metal Clusters: The Reactions of Bi2Fe3(CO)9 with [Fe(CO)4]2– and [Co(CO)4]–. J. Am. Chem. Soc. 1986, 108, 2778–2780. (d) Gröer, T.; Scheer, M. Transition-Metal-Substituted Dichlorobismuthanes as Starting Materials for Novel Bismuth-Transition-Metal Clusters. Organometallics 2000, 19, 3683–3691. (e) Rossignoli, M.; Burns, R. C.; Craig, D. C. Photolytic, Pyrolytic and Trimethylamine N-Oxide Induced CO Removal from [BiFe4(CO)16]3–: Synthesis, X-Ray Crystal Structure and Properties of [N(PPh3)2]2[Bi2Fe5(CO)17]. Aust. J. Chem. 2000, 53, 975–982. (f) Femoni, C.; Bussoli, G.; Ciabatti, I.; Ermini, M.; Hayatifar, M.; Iapalucci, M. C.; Ruggieri, S.; Zacchini, S. Interstitial Bismuth Atoms in Icosahedral Rhodium Cages: Syntheses, Characterizations, and Molecular Structures of the [Bi@Rh12(CO)27]3−, [(Bi@Rh12(CO)26)2Bi]5−, [Bi@Rh14(CO)27Bi2]3−, and [Bi@Rh17(CO)33Bi2]4− Carbonyl Clusters. Inorg. Chem. 2017, 56, 6343−6351. (g) Adams, R. D.; Kan, Y.; Zhang, Q. Facile Cleavage of Phenyl Groups from BiPh3 in its Reactions with Os3(CO)10(NCMe)2 and Evidence for Localization of π-bonding in a Bridging Benzyne Ligand. J. Organomet. Chem. 2014, 751, 475–481. (h) Adams, R. D.; Chen, M.; Elpitiya, G.; Potter, M. E.; Raja, R. Iridium−Bismuth Cluster Complexes Yield Bimetallic Nano-Catalysts for the Direct Oxidation of 3‑Picoline to Niacin. ACS Catal. 2013, 3, 3106−3110. (i) Adams, R. D.; Pearl, W. C., Jr. Trimetallic ReBiPt Complexes Containing Spiro-Bismuth Ligands from the Reaction of the Bis(tri-t-butylphosphine)platinum with Re3(CO)12(μ-BiPh2)(μ-H)2. J. Organomet. Chem. 2011, 696, 1198−1210. (j) Adams, R. D.; Pearl, W. C., Jr. Osmium−Bismuth Complexes from the Reaction of Os3(CO)11(NCMe) with BiPh3. Inorg. Chem. 2010, 49, 7170–7175. (k) Whitmire, K. H.; Shieh, M.; Cassidy, J. Synthesis, Characterization, and Reactivity of Iron Carbonyl Clusters Containing Bismuth or Antimony. Crystal Structures of Isomorphous [Et4N][BiFe3Cr(CO)17] and [Et4N][SbFe3Cr(CO)17] and the Ring Complex Bi2Fe2(CO)8Me2. Inorg. Chem. 1989, 28, 3164–3170. (l) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitton, A. J. Synthesis and Characterisation of the Hexanuclear Bimetallic Cluster, [{Ru2(CO)8}(μ4-Bi){(μ-H)Ru3(CO)10}]. J. Chem. Soc., Chem. Commun. 1988, 401–402. (m) Ang, H. G.; Hay, C. M.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitton, A. J. Preparation and Characterisation of Some Mixed Clusters of Bismuth with Osmium and Ruthenium; Crystal and Molecular Structures of Os3(μ-H)3(CO)9(μ3-Bi), Os4(CO)12(μ4-Bi)2, Ru3(μ-H)3(CO)9(μ3-Bi), and Ru4(CO)12(μ4-Bi)2. J. Organomet. Chem. 1987, 330, C5–C11. (n) Whitmire, K. H.; Shieh, M.; Lagrone, C. B.; Robinson, B. H.; Churchill, M. R.; Fettinger, J. C.; See, R. F. Transformations in the Bismuth-Iron Carbonyl Cluster System: Importance of Oxidation/Reduction Reactions. Crystal Structures of [Me4N]3[Bi2Fe4(CO)13]Cl and [Et4N][Bi2Fe2Co(CO)10]. Inorg. Chem. 1987, 26, 2798–2807. (o) Whitmire, K. H.; Albright, T. A.; Kang, S.-K.; Churchill, M. R.; Fettinger, J. C. Structural and Theoretical Discussion of [Bi4Fe4(CO)13]2−: Application of MO and TEC Theories to a Zintl-Metal Carbonylate. Inorg. Chem. 1986, 25, 2799–2805. (p) Whitmire, K. H.; Churchill, M. R.; Fettinger, J. C. Synthesis and Crystal Structure of [Et4N]2[Bi4Fe4(CO)13]. Discovery of a Hybrid Zintl-Metal Carbonyl Cluster. J. Am. Chem. Soc. 1985, 107, 1056–1057. (q) Monakhov, K. Y.; Gourlaouen, C.; Zessin, T.; Linti, G. Synthesis and Crystal Structure of a “FeBi” Cluster Compound with Noncovalent Low-Valent Bi···πArene Interactions. Inorg. Chem. 2013, 52, 6782−6784. (r) Monakhov, K. Y.; Zessin, T.; Linti, G. Cubane-Like Bismuth-Iron Cluster: Synthesis, X-ray Crystal Structure and Theoretical Characterization of the [Bi4Fe8(CO)28]4– Anion. Eur. J. Inorg. Chem. 2010, 3212–3219.
    (3) (a) Shieh, M.; Yu, C.-C.; Hsing, K.-J.; Chang, W.-J. A Multiply Bonded Trigonal-Planar Bismuth(III) Complex: Prodigious Lewis Acidity, Solvatochromism, Etherification, and Semiconducting Characteristics. Chem. Eur. J. 2017, 23, 11677‒11683. (b) Shieh, M.; Cherng, J.-J.; Lai, Y.-W.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Carbonylchromium Derivatives of Bismuth: New Syntheses and Relevance to C−O Activation. Chem. Eur. J. 2002, 8, 4522–4527. (c) Bachman, R. E.; Whitmire, K. H. Synthesis and Structure of Carbonyl-Metalated Organobismuth Complexes. Inorg. Chem. 1995, 34, 1542–1551. (d) Breunig, H. J.; Lork, E.; Raţ, C. I.; Wagner, R. P. Syntheses and Crystal Structures of [tBu3SbCr(CO)5], [tBu3BiM(CO)5] (M = Cr, W), and [tBu3BiMnCp'(CO)2] (Cp' = η5-C5H4CH3). J. Organomet. Chem. 2007, 692, 3430–3434. (e) Xu, L.; Ugrinov, A.; Sevov, S. C. Stabilization of Ozone-like [Bi3]3− in the Heteroatomic closo-Clusters [Bi3Cr2(CO)6]3− and [Bi3Mo2(CO)6]3−. J. Am. Chem. Soc. 2001, 123, 4091–4092. (f) Vránová, I.; Kremláček, V.; Erben, M.; Turek, J.; Jambor, R.; Růžička, A.; Alonso, M.; Dostál, L. A Comparative Study of the Structure and Bonding in Heavier Pnictinidene Complexes [(ArE)M(CO)n] (E = As, Sb and Bi; M = Cr, Mo, W and Fe). Dalton Trans. 2017, 46, 3556–3568. (g) Vránová, I.; Dušková, T.; Erben, M.; Jambor, R.; Růžička, A.; Dostál, L. Trapping of the N,C,N-Chelated Organobismuth(I) Compound, [2,6-(Me2NCH2)2C6H3]Bi, by Its Coordination toward Selected Transition Metal Fragments. J. Organomet. Chem. 2018, 863, 15–20.
    (4) (a) Adams, R. D.; Elpitiya, G. The Addition of Gold and Tin to Bismuth−Triiridium Carbonyl Complexes. Inorg. Chem. 2015, 54, 8042−8048. (b) Adams, R. D.; Chen, M.; Elpitiya, G.; Zhang, Q. Synthesis and Characterizations of Bismuth-Bridged Triiridium Carbonyl Complexes Containing Germyl/Germylene and Stannyl/Stannylene Ligands. Organometallics 2012, 31, 7264−7271.
    (5) (a) Konchenko, S. N.; Pushkarevsky, N. A.; Virovets, A. V.; Scheer, M. Reactions of [Fe3(μ3-Q)(CO)9]2– (Q = Se, Te) with Organic and Organometallic Dihalides of Group 15 Elements – an Approach to Functionalised Clusters. Dalton Trans. 2003, 581–585. (b) Merzweiler, K.; Brands, L. New Organometallic Bismuth Chalcogen Compounds with Mo2BiE Framework (E = S, Se). Z. Naturforsch. 1992, 47b, 978‒982. (c) Wieber, M.; Wirth, D.; Burschka, C. Synthesis and Structure of Some η5-Cyclopentadienyldicarbonylironbismuth Compounds Cp(CO)2FeBiX2 with Five-Coordinated Bismuth Atoms. Z. Naturforsch. 1985, 40b, 258‒262. (d) Breunig, H. J.; Königsmann, L.; Lork, E.; Nema, M.; Philipp, N.; Silvestru, C.; Soran, A.; Varga, R. A.; Wagner, R. Hypervalent Organobismuth(III) Carbonate, Chalcogenides and Halides with the Pendant Arm Ligands 2-(Me2NCH2)C6H4 and 2,6-(Me2NCH2)2C6H3. Dalton Trans. 2008, 1831‒1842. (e) Davies, S. J.; Compton, N. A.; Huttner, G.; Zsolnai, L.; Garner, S. E. Synthesis and Reactivity of “Bismuthinidene” Compounds and the Formation of BiI Chelate Complexes. Chem. Ber. 1991, 124, 2731‒2738. (f) Crispini, A.; Errington, R. J.; Fisher, G. A.; Funke, F. J.; Norman, N. C.; Orpen, A. G.; Stratford, S. E.; Struve, O. Synthetic and Structural Studies on Bismuth(III) Thiocyanate and Selenocyanate Complexes. J. Chem. Soc. Dalton Trans. 1994, 1327‒1335. (g) Clegg, W.; Elsegood, M. R. J.; Farrugia, L. J.; Lawlor, F. J.; Norman, N. C.; Scott, A. J. Neutral Thiolates of Antimony(III) and Bismuth(III). J. Chem. Soc. Dalton Trans. 1995, 2129‒2135.
    (6) (a) Tan, G.; Zhao, L.-D.; Kanatzidis, M. G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123−12149 and references therein. (b) Zhao, J.; Hao, S.; Islam, S. M.; Chen, H.; Ma, S.; Wolverton, C.; Kanatzidis, M. G. Quaternary Chalcogenide Semiconductors with 2D Structures: Rb2ZnBi2Se5 and Cs6Cd2Bi8Te17. Inorg. Chem. 2018, 57, 9403−9411. (c) Zhao, J.; Islam, S. M.; Tan, G.; Hao, S.; Wolverton, C.; Li, R. K.; Kanatzidis, M. G. The New Semiconductor Cs4Cu3Bi9S17. Chem. Mater. 2017, 29, 1744–1751. (d) Lee, C.; An, T.-H.; Gordon, E. E.; Ji, H. S.; Park, C.; Shim, J.-H.; Lim, Y. S.; Whangbo, M.-H. Seebeck Coefficients of Layered BiCuSeO Phases: Analysis of Their Hole-Density Dependence and Quantum Confinement Effect. Chem. Mater. 2017, 29, 2348–2354. (e) Sun, X.; Zhu, Q.; Kang, X.; Liu, H.; Qian, Q.; Zhang, Z.; Han, B. Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angew. Chem. Int. Ed. 2016, 55, 6771–6775. (f) Liu, W.; West, D.; He, L.; Xu, Y.; Liu, J.; Wang, K.; Wang, Y.; van der Laan, G.; Zhang, R.; Zhang, S.; Wang, K. L. Atomic-Scale Magnetism of Cr-Doped Bi2Se3 Thin Film Topological Insulators. ACS Nano 2015, 9, 10237–10243. (g) Ranmohotti, K. G. S.; Djieutedjeu, H.; Lopez, J.; Page, A.; Haldolaarachchige, N.; Chi, H.; Sahoo, P.; Uher, C.; Young, D.; Poudeu, P. F. P. Coexistence of High‑Tc Ferromagnetism and n‑Type Electrical Conductivity in FeBi2Se4. J. Am. Chem. Soc. 2015, 137, 691−698. (h) Wang, Q.; Fang, Y.; Yin, H.; Li, J. Inhomogenous Doping Induced the Imperfect Self-Assembly of Nanocrystals for the Synthesis of Porous AgPb10BiTe12 Nanosheets and Their Thermoelectric Transport Properties. Chem. Commun. 2015, 51, 1594–1596. (i) Olvera, A.; Shi, G.; Djieutedjeu, H.; Page, A.; Uher, C.; Kioupakis, E.; Poudeu, P. F. P. Pb7Bi4Se13: A Lillianite Homologue with Promising Thermoelectric Properties. Inorg. Chem. 2015, 54, 746−755. (j) Clarke, S. M.; Freedman, D. E. (BiSe)1.23CrSe2 and (BiSe)1.22(Cr1.2Se2)2: Magnetic Anisotropy in the First Structurally Characterized Bi−Se−Cr Ternary Compounds. Inorg. Chem. 2015, 54, 2765−2771. (k) Ranmohotti, K. G. S.; Djieutedjeu, H.; Poudeu, P. F. P. Chemical Manipulation of Magnetic Ordering in Mn1−xSnxBi2Se4 Solid−Solutions. J. Am. Chem. Soc. 2012, 134, 14033−14042. (l) Liu, Y.; Zhao, L.-D.; Liu, Y.; Lan, J.; Xu, W.; Li, F.; Zhang, B.-P.; Berardan, D.; Dragoe, N.; Lin, Y.-H.; Nan, C.-W.; Li, J.-F.; Zhu, H. Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies. J. Am. Chem. Soc. 2011, 133, 20112–20115. (m) Lee, S. K. C.; Yu, Y.; Perez, O.; Puscas, S.; Kosel, T. H.; Kuno, M. Bismuth-Assisted CdSe and CdTe Nanowire Growth on Plastics. Chem. Mater. 2010, 22, 77–84.
    (7) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Recent Progress in the Chemistry of Anionic Groups 6–8 Carbonyl Chalcogenide Clusters. Coord. Chem. Rev. 2012, 256, 637‒694 and references therein. (b) Lin, C.-N.; Huang, C.-Y.; Yu, C.-C.; Chen, Y.-M.; Ke, W.-M.; Wang, G.-J.; Lee, G.-A.; Shieh, M. Iron Carbonyl Cluster-Incorporated Cu(I) NHC Complexes in Homocoupling of Arylboronic Acids: An Effective [TeFe3(CO)9]2− Ligand. Dalton Trans. 2015, 44, 16675‒16679. (c) Chen, B.-G.; Ho, C.-H.; Lee, C.-J.; Shieh, M. Copper Halide-Incorporated Tellurium-Iron Carbonyl Complexes: Transformation, Electrochemical Properties, and Theoretical Calculations. Inorg. Chem. 2009, 48, 10757‒10768. (d) Shieh, M.; Miu, C.-Y.; Lee, C.-J.; Chen, W.-C.; Chu, Y.-Y.; Chen, H.-L. Construction of Copper Halide-Triiron Selenide Carbonyl Complexes: Synthetic, Electrochemical, and Theoretical Studies. Inorg. Chem. 2008, 47, 11018‒11031.
    (8) (a) Bachman, R. E.; Whitmire, K. H. Synthesis and Characterization of a Series of Iron Carbonyl Clusters Containing Selenium and Tellurium. Inorg. Chem. 1994, 33, 2527‒2533. (b) Holliday, R. L.; Roof, L. C.; Hargus, B. Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. The Chemistry of Iron Carbonyl Sulfide and Selenide Anions. Inorg. Chem. 1995, 34, 4392‒4401.
    (9) (a) Hieber, W.; Gruber, J. Zur Kenntnis der Eisencarbonylchalkogenide. Z. Anorg. Allg. Chem. 1958, 296, 91‒103. (b) Dahl, L. F.; Sutton, P. W. Structure of Se2Fe3(CO)9 and Evidence for a New Type of Seven-Coordinated Metal. Inorg. Chem. 1963, 2, 1067‒1069.
    (10) (a) Alvarez, S. A Cartography of the van der Waals Territories. Dalton Trans. 2013, 42, 8617–8636. (b) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812.
    (11) (a) Nguyen, T.-A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc. 2015, 137, 13319 −13324. (b) Shieh, M.; Yu, C.-C.; Miu, C.-Y.; Kung, C.-H.; Huang, C.-Y.; Liu, Y.-H.; Liu, H.-L.; Shen, C.-C. Semiconducting Coordination Polymers Based on the Predesigned Ternary Te−Fe−Cu Carbonyl Cluster and Conjugation-Interrupted Dipyridyl Linkers. Chem. Eur. J. 2017, 23, 11261 –11271.
    (12) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215‒241.
    (13) Haiduc, I. Inverse Coordination – An Emerging New Chemical Concept. Oxygen and Other Chalcogens as Coordination Centers. Coord. Chem. Rev. 2017, 338, 1‒26.
    (14) van Hal, J.; Whitmire, K. H. Site-Directed Alkylation of [EFe3(CO)9]2- (E = S, Se, Te) Mediated by the Chalcogenide. Synthesis, Spectroscopic Characterization, and Reactivity of [PPN][MeFe3(CO)9E] (E = Se, Te). Organometallics 1998, 17, 5197‒5201.
    (15) Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563‒594.
    (16) (a) Pyykkö, P. Additive Covalent Radii for Single‑, Double‑, and Triple-Bonded Molecules and Tetrahedrally Bonded Crystals: A Summary. J. Phys. Chem. A 2015, 119, 2326−2337. (b) Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1–118. Chem. Eur. J. 2009, 15, 186–197.
    (17) Eveland, J. R.; Saillard, J.-Y.; Whitmire, K. H. Effect of Hybridization on Structure and Bonding of Cluster Compounds Possessing a Square-Pyramidal Fe3(CO)9E2 Core (E = Element of Group 15 or 16). Inorg. Chem. 1997, 36, 330–334.
    (18) (a) Bachman, R. E.; Whitmire, K. H. Molecular and Crystal Structure of [Et4N][Cl]∙2[Fe2(CO)6Te2]. J. Organomet. Chem. 1994, 479, 31−35. (b) Shieh, M.; Chen, P.-F.; Tsai, Y.-C.; Shieh, M.-H. Facile Syntheses and Transformations of a Series of Tellurium−Iron Carbonyl Clusters: Crystal Structures of [PhCH2NMe3]2[Te6Fe8(CO)24], Fe2(CO)6(μ-TeCHCl2)2, and Fe2(CO)6(μ-TeCHPhTe). Inorg. Chem. 1995, 34, 2251−2254. (c) Das, B. K.; Kanatzidis, M. G. Solvothermal Synthesis, Molecular Structures and Spectroscopic Characterization of the Cluster Compounds (Ph4P)2[Fe4Te2(CO)14] and Cs[HFe3Te(CO)9]. J. Organomet. Chem. 1996, 513, 1−6. (d) Shieh, M.; Shieh, M.-H. Reaction of [Te6Fe8(CO)24]2− with Dihaloalkanes: A New Route to Organotellurium Complexes of Iron. Organometallics 1994, 13, 920−924. (e) Shieh, M.; Tang, T.-F. Effects of Main-Group and Transition Elements on Bond Formation and Cleavage in Transition-Metal Chalcogenide Clusters: Reactions of E2Fe3(CO)9 (E = Te, Se) with [Co(CO)4]−, [Mn(CO)5]−, and [Fe(CO)4]2−. Inorg. Chem. 1995, 34, 2797−2803. (f) Das, B. K.; Kanatzidis, M. G. New Mixed-Metal Carbonyl Tellurido Clusters from Solvothermal Synthesis. Inorg. Chem. 1995, 34, 5721−5725. (g) Mathur, P.; Rai, D. K.; Ji, R. S.; Pathak, B.; Boodida, S. Mobin, S. M. Structural and Electrochemical Aspects of Tris(ferrocenyl/phenyl-ethynyl)phosphine Ligated Chalcogen Bridged Iron Carbonyl Clusters. RSC Adv. 2013, 3, 26025–26034. (h) Tirkey, V.; Boddhula, R.; Mishra, S.; Mobin, S. M.; Chatterjee, S. Synthesis, Structure and Antibacterial Activity of Ferrocenyl Diphopshine Chelated Iron−Telluride Cluster. J. Organomet. Chem. 2015, 794, 88−95. (i) Rahaman, A.; Lisensky, G. C.; Tocher, D. A.; Richmond, M. G.; Hogarth, G.; Nordlander, E. Synthesis and Molecular Structures of the 52-Electron Triiron Telluride Clusters [Fe3(CO)8(μ3-Te)2(κ2-diphosphine)] – Electrochemical Properties and Activity as Proton Reduction Catalysts. J. Organomet. Chem. 2018, 867, 381−390. (j) Mathur, P.; Manimaran, B.; Satyanarayana, C. V. V.; Varghese, B. Synthesis, Spectroscopic and Structural Charactedsation of (CO)6Fe2EE'{μ-C(H)(CH3)}2 and (CO)6Fe2{(μ-EC(H)(CH3)E'} (E, E' = S, Se, Te). J. Organomet. Chem. 1997, 527, 83−91. (k) Campana, C. F.; Lo, F. Y.-K.; Dahl, L. F. Stereochemical Analysis of Fe2(CO)6(μ-Se2): A Diselenium Analogue of Fe2(CO)6(μ-S2). Inorg. Chem. 1979, 18, 3060−3064. (l) Eveland, J. R.; Saillard, J.-Y.; Whitmire, K. H. Halide Ion Addition to Bismuth-Containing Iron Carbonyl Compounds: Synthesis and Characterization of the Two Bridged-Butterfly Cluster Compounds [Et4N][(µ-H)Fe2(CO)6Bi2{µ-Fe(CO)4}] and [{PhCH2NMe3}{(µ-H)Fe2(CO)6Bi2(µ-Cl)2}]∞ and Stabilization of Reduced-Hypervalent Bismuth Centers by Coordination to a Metal Center in [PhCH2NMe3]3[Bi3Cl4(µ-Cl)4{Fe(CO)3}]. Inorg. Chem. 1997, 36, 4387−4396.
    (19) (a) Braga, D.; Grepioni, F. Hydrogen-Bonding Interactions with the CO Ligand in the Solid State. Acc. Chem. Res. 1997, 30, 81−87. (b) Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. Hydrogen Bonding in Organometallic Crystals. 2. C–H···O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. J. Am. Chem. Soc. 1995, 117, 3156−3166.
    (20) (a) Kubelka, P.; Munk, F. Ein Beitrag zür Optik der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. (b) Tauc, J. Absorption Edge and Internal Electric Fields in Amorphous Semiconductors. Mater. Res. Bull. 1970, 5, 721–729.
    (21) Shieh, M.; Yu, C.-C. Ternary Copper-Incorporated Group 8 (Ru or Fe) Carbonyl Chalcogenide Complexes and Polymers: From Syntheses to Applications. J. Organomet. Chem. 2017, 849–850, 219–227.
    (22) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498−6506.
    (23) (a) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517. (b) Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764.
    (24) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
    (25) Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473.
    (26) In The Manipulation of Air-Sensitive Compounds; Shriver, D. F., Drezdon, M. A, Eds.; Wiley-VCH: New York, 1986.
    (27) Hooker, R. H.; Rest, A. J. Photochemistry of the Group VI Metal Hexacarbonyls in Polyvinyl-Chloride Film Matrices at 12-298 K. The Reactivity of the Species M(CO)5 and M(CO)5(THF). J. Organomet. Chem. 1983, 249, 137−147.
    (28) Bruker, SADABS, Bruker AXS Inc.; Madison, Wisconsin, USA, 2003.
    (29) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112−122.
    (30) (a) Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648−5652. (b) Becke, A. D. Density‐Functional Thermochemistry. I. The Effect of the Exchange‐Only Gradient Correction. J. Chem. Phys. 1992, 96, 2155−2160. (c) Becke, A. D. Density‐Functional Thermochemistry. II. The Effect of the Perdew–Wang Generalized‐Gradient Correlation Correction. J. Chem. Phys. 1992, 97, 9173−9177. (d) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822−8824.
    (31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01, Gaussian, Inc.; Wallingford CT, 2009.
    (32) (a) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. (b) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. Relativistic Effects in Gold Chemistry. I. Diatomic Gold Compounds. J. Chem. Phys. 1989, 91, 1762−1774. (c) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123−141. (d) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13–17. Mol. Phys. 1993, 80, 1431−1441.
    (33) Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735−746.
    (34) (a) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near‐Hartree–Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066−4073. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899−926.
    (35) (a) Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0, http://avogadro.openmolecules.net/. (b) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4, 4−17.
    (36) Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
    (37) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580−592.
    (38) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33−38.
    (39) In Electrochemical Methods; Fundamentals and Applications 2nd edn; Bard, A. J., Faulkner, L. R. Eds.; John Wiley & Sons: New York, 2001; pp. 291.
    (40) Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. Aqueous Electrochemistry of a C60-Bearing Artificial Lipid Bilayer Membrane Film Immobilized on an Electrode Surface: Thermodynamics for the Binding of Tetraalkylammonium Ion to the Fullerene Anion. J. Phy. Chem. B, 1999, 103, 304–308.
    (41) Ravel, B.; Newville, M. Athena, Artemis, Hephaestus: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537−541.

    無法下載圖示 本全文未授權公開
    QR CODE