簡易檢索 / 詳目顯示

研究生: 林延壕
Lin, Yen-Hao
論文名稱: 單核錳金屬超氧錯合物:合成、鑑定及其反應性
Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization and Reactivity
指導教授: 李位仁
Lee, Way-Zen
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 144
中文關鍵詞: 氧氣活化金屬超氧化合物反應性三價錳超氧化物三價錳金屬過氧氫化物四價錳金屬過氧氫化物
英文關鍵詞: oxygen activation, metal-superoxo reactivity, MnIII-superoxo, MnIII-hydroperoxo, MnIV-hydroperoxo
DOI URL: http://doi.org/10.6345/NTNU202000745
論文種類: 學術論文
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於含鐵金屬仿生錯合物,以含錳金屬仿生錯合物進行氧氣活化的反應是較少被科學家拿來進行探討。本研究使用三氮二氧配位基 (H2BDPP和H2BDPBrP)。與二價錳金屬離子進行錯合反應,分別形成MnII(BDPP) (1) 和MnII(BDPBrP) (2)。在−80 °C下加入氧氣會分別形成MnIII(BDPP)(O2•) (3) 和MnIII(BDPP)(O2•) (4),以UV-Vis、rRaman和EPR光譜,可鑑定其為錳超氧錯合物,且其自旋組態為S = 3/2。錯合物3和4也可以與TEMPO-H進行氫原子轉移反應生成MnIII(BDPP)(OOH) (5)和MnIII(BDPBrP)(OOH) (6),由EPR光譜可以得知其自旋組態為S = 2。除此之外,錯合物 [MnIII(BDPP)(H2O)](OTf) (7)和 [MnIII(BDPP)(H2O)](OTf) (8)加入H2O2/TEA (2:1)也可形成錯合物5和6。錯合物4與2-phenylpropinaldehyde (2-PPA) 進行親核反應,可以生成產物acetophenone。錯合物4在−120 °C與一當量的trifluoroacetic acid (TFA) 反應會形成 [MnIV(BDPBrP)(OOH)]+ (9),可以UV-Vis、rRaman和EPR光譜鑑定。錯合物9也可以加入一當量的TEA或DBU進行去質子化轉變回錯合物 (4)。由MnIII(BDPBrP)(OOH) (6) 低溫循環伏安法實驗可以得到quasi-reversible的訊號,其還原電位為0.19 V (v.s. Fc/Fc+),並且可以藉由氧化劑magic blue氧化生成錯合物9,錯合物9也可以藉由還原劑decamethylferrcene還原為錯合物6。由錯合物6的還原電位0.19 V和錯合物9的pKa = 12.5 ~ 11.1求出錯合物6中OO-H的鍵能為85.6 ~ 87.5 kcal/mol。將路易酸的金屬離子Sc(OTf)3和Zn(OTf)2加入錯合物4會進行metal-coupled electron-transfer反應形成 [MnIVBDPBrP(OO)(Sc(OTf)n)](3−n)+ (10) 和[MnIVBDPBrP(OO)(Zn(OTf)n)](2−n)+ (11)。但加入較弱的路易酸金屬離子Ca(OTf)2卻不會進行metal-coupled electron-transfer。藉由以上的探討,可以更進一步的了解三價錳超氧化物的反應特性。

    Comparing to biomimetic Fe-containing complexes, the biomimetic Mn-containing complexes invented for dioxygen activation is much less explored. In this study, two ligands, H2BDPP and H2BDPBrP were employed to react with MnII ion for the preparation of MnII(BDPP) (1) and MnII(BDPBrP) (2). Both MnII complexes were reacted with O2 at −80 °C to form MnIII–superoxo intermediates MnIII(BDPP)(O2•) (3) and MnIII(BDPBrP)(O2•) (4) characterized by UV-Vis, rRaman and EPR spectroscopy. The spin state of 3 and 4 was 3/2 with a high-spin MnIII center (SMn = 2) antiferromagnetically coupled with a superoxo radical ligand (SOO• = 1/2). Complexes 3 and 4 could perform hydrogen atom abstraction towards TEMPOH at −90 °C to form MnIII(BDPP)(OOH) (5) and MnIII(BDPBrP)(OOH) (6) characracterized by UV-Vis and EPR spectroscopy. The spin state (S = 2) of 5 and 6 is comfirmed by parallel-mode EPR spectroscopy. Besides, Complexes 5 and 6 can also be synthesized by the reactions of [MnIII(BDPP)(H2O)]OTf (7) and [MnIII(BDPBrP)(H2O)]OTf (8) with H2O2/TEA (2:1). Noteworthily, complex 4 is capable of reacting with 2-PPA at −80 °C to produce acetophenone. Intrestingly, complex 4 treated with trifluoroacetic acid at −120 °C generated [MnIVBDPBrP(OOH)]+ (9), which can be deprotonated by 1 equiv. of TEA or DBU to reproduce complex 4. Also, reaction of 4 reacted with Sc(OTf)3 or Zn(OTf)2 induced metal-coupled electron-transfer to form dinuclear MnIV/ScIII and MnIV/ZnII briged peroxo complexes [MnIVBDPBrP(OO)(Sc(OTf)n)](3−n)+ (10) and [MnIVBDPBrP(OO)(Zn(OTf)n)](2−n)+ (11). However, complex 4 did not react with the weaker Lewis acid Ca(OTf)2. In addition, cyclic votalmetry of MnIII(BDPBrP)(OOH) (6) was performed to obtain E1/2 = 0.19 V (v.s. Fc/Fc+) at −80 °C. From E1/2 of 6 and pKa of 9 (12.5 ~ 11.1), we can estimated the bond dissociation freee energy of the OO-H bond in 6 was around 85.6 ~ 87.5 kcal/mol. In conclusion, these results can in-depth understand the reactivity of MnIII-superoxo complexes.

    第一章 緒論 1 1.1血基質含鐵酵素 3 1.2非血基質含鐵酵素 6 1.2.1異青黴素N合成酶Isopenicillin N Synthase (IPNS) 6 1.2.2 2-hydroxyethylphosphonate dioxygenase (HEPD) 8 1.2.3 Homoprotocatechuate 2,3-Dioxygenase (Fe-HPCD) 10 1.3非血基質含錳酵素 11 1.3.1 Oxygen Evolving complex 11 1.3.2 homoprotocatechuate 2,3-dioxygenases (Mn-MndD) 14 1.4.含鐵金屬模擬超氧合物 15 1.4.1 ([(TAML)FeIII(O2•)]2− 15 1.4.2 FeIII(BDPP)(O2•) 17 1.4.3 [FeIII(O2•)(LPh)(TpMe2)] 18 1.4.4 [FeIII(S2Me2N3(Pr,Pr))(O2•)] 20 1.5含錳金屬進行氧氣活化之模擬錯合物 22 1.5.1 [MnIII(L)(O2•)(H2O)](PF6)2 22 1.5.2 [MnIII(SMe2N4(6-MeDPEN)]2(trans-μ-1,2-O2)(BPh4)2 23 1.5.3 [MnIIIH3bupa(O2)]− 25 1.6 Metal-superoxo與質子反應性探討 26 1.6.1 [CuII(TMG3tren)(O2•)]+ 與TFA反應 27 1.6.2 [LCuII(O2•)]− 與phenol反應 30 1.6.3 [(Cl)(TMC)CrIII(O2•)]+ 與HOTf反應性 31 1.7 Metal-superoxo與路易酸反應性探討 33 1.7.1 [(Cl)(TMC)CrIII(O2•)]+ 與路易酸反應性 33 第二章 實驗方法 35 2-1.1 實驗儀器 35 2-1.2 實驗藥品 37 2-1.3 實驗條件 40 2-2配位基合成及反應物製備 41 2-2.1配位基 41 2-2.2 TEMPOH/D之製備 42 2-3錯合物製備 43 2-3.1 MnII(BDPP) (1) 43 2-3.2 MnII(BDPBrP) (2) 43 2-3.3 MnIII(BDPP)(O2•) (3) 和 MnIII(BDPBrP)(O2•) (4) 44 2-3.4 MnIII(BDPP)(OOH) (5)和MnIII(BDPBrP)(OOH) (6) 44 2-3.5 [MnIII(BDPP)(H2O)(OTf)] (7)和[MnIII(BDPBrP)(H2O)(OTf)] (8) 45 2-3.6 [MnIV(BDPBrP)(OOH)]+ (9) 45 2-3.7 [MnIV(BDPBrP)(OO)(Sc(OTf)n)](3−n)+ (10) 46 2-3.8 [MnIV(BDPBrP)(OO)(Zn(OTf)n)](2−n)+ (11) 46 2-4 共振拉曼樣品製備 47 2-4.1 MnIII(BDPP)(O2•) (3)和MnIII(BDPBrP)(O2•) (4) rRaman樣品配置 47 2-4.2 [MnIV(BDPBrP)(OOH)]+ (9) rRaman樣品配置 47 2-4.3 [MnIV(BDPBrP)(OO)(Sc(OTf)n)](3−n)+ (10) rRaman樣品配置 48 2-5 EPR樣品製備 50 2-5.1 MnII(BDPP) (1) 和MnII(BDPBrP) (2) EPR樣品配置 50 2-5.2 MnIII(BDPBrP)(O2•) (4) EPR樣品配置 50 2-5.3 MnIII(BDPBrP)(OOH) (6) EPR樣品配置 50 2-5.4 MnIV(BDPBrP)(OOH) (9) EPR樣品配置 51 2-5.5 [MnIV(BDPBrP)(OO)(Sc(OTf)n)](3−n)+ (10) EPR樣品配置 51 2-6 TEMPO定量實驗 52 2-7 H2O2定量實驗 52 2-8 MnIII(BDPBrP)(O2•) (4)與TEMPOH動力學實驗探討 53 2-9 MnIII(BDPBrP)(OOH) (4)氧化還原電位測量 55 第三章 結果與討論 56 3-1.1 MnII(BDPP) (1) 和MnII(BDPBrP) (2) 合成與結構 56 3-1.2 MnII(BDPP) (1) 和MnII(BDPBrP) (2) 循環伏安法 58 3-1.3 MnII(BDPP) (1) 和MnII(BDPBrP) (2) EPR 光譜之探討 60 3-2.1 MnII(BDPP) (1) 和MnII(BDPBrP) (2) 與氧氣反應 62 3-2.2 MnIII(BDPP)(O2•) (3) rRaman 光譜 66 3-2.3 MnIII(BDPBrP)(O2•) (4) rRaman 光譜 67 3-2.4 MnIII(BDPBrP)(O2•) (4) EPR光譜 69 3-3.1 MnIII(BDPP)(O2•) (3) 和MnIII(BDPBrP)(O2•)(4) TEMPOH反應 73 3-3.2 MnIII(BDPP)(OOH) (5) 和MnIII(BDPBrP)(OOH) (6) 與HOTf反應 76 3-3.3 [[MnIII(BDPP)(H2O)](OTf)] (7) 和 [MnIII(BDPBrP)(H2O)](OTf) (8) 與H2O2/TEA反應 80 3-3.4 MnIII(BDPBrP)(OOH) (6) 之EPR 光譜探討 82 3-3.5 MnIII(BDPBrP)(O2•) (4) 與TEMPOH 反應速率探討 84 3-3.6 MnIII(BDPBrP)(O2•) (4) 與2-PPA反應 86 3-3.7 MnIII(BDPBrP)(O2•) (4)與CF3COOH 反應 88 3-3.8 MnIII(BDPBrP)(O2•) (4) 與CF3COOH反應後產物之EPR光譜 91 3-3.9 MnIII(BDPBrP)(O2•) (4) 與CF3COOH反應後產物之rRaman光譜 96 3-3.10 MnIII(BDPBrP)(OOH) (6)氧化反應 98 3-3.11 [MnIV(BDPBrP)(OOH)] (9) 的還原反應 102 3-3.12 [MnIV(BDPBrP)(OOH)]+ (9) 去質子化反應 104 3-3.13 MnIII(BDPBrP)(OOH) (6) 的O-H鍵能計算 108 3-3.14 模擬光合作用釋放氧氣的過程 112 3-3.15 MnIII(BDPBrP)(O2•) (4) 與Sc(OTf)3的反應 117 3-3.16 MnIII(BDPBrP)(O2•) (4) 與Sc(OTf)3反應後產物之EPR光譜 119 3-3.17 MnIII(BDPBrP)(O2•) (4) 與Sc(OTf)3反應後產物rRaman光譜 122 3-3.18 MnIII(BDPBrP)(O2•) (4) 與Zn(OTf)2反應 123 3-3.19 MnIII(BDPBrP)(O2•) (4) 與Ca(OTf)2反應 125 3-3.20 MnIV(BDPBrP)(OOH) (9) 與TEMPOH反應 127 第四章 結論 130 4-1總結 130 4-2未來展望 133 參考文獻 附錄

    (1) Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. Dioxygen Reactions. In Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994; pp 253−313.
    (2) Wang, Y.; Li, J.; Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 2017, 22, 395-405.
    (3) Sahu, S.; Goldberg, D. P. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective. J. Am. Chem. Soc. 2016, 138, 11410-11428.
    (4) Williams, P. A.; Cosme, J.; Vinković, D. M.; Ward, A.; Angove, H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; Jhoti, H. Crystal Structures of Human Cytochrome P450 3A4 Bound to Metyrapone and Progesterone. Science 2004, 305, 683.
    (5) Roach, P. L.; Clifton, I. J.; Fülöp, V.; Harlos, K.; Barton, G. J.; Hajdu, J.; Andersson, I.; Schofield, C. J.; Baldwin, J. E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 1995, 375, 700-704.
    (6) McEvoy, J. P.; Brudvig, G. W. Water-Splitting Chemistry of Photosystem II. Chem. Rev. 2006, 106, 4455-4483.
    (7) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of Reactive Non-Heme metal-Oxygen Intermediates in Chemical and Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 13942-13958.
    (8) Fukuzumi, S.; Lee, Y. M.; Nam, W. Structure and Reactivity of the First-Row D-Block Metal-Superoxo Complexes. Dalton Trans 2019, 48, 9469-9489.
    (9) Lohmann, W.; Karst, U. Biomimetic modeling of oxidative drug metabolism : Strategies, advantages and limitations. Anal Bioanal Chem 2008, 391, 79-96.
    (10) Baldwin, J. E.; Bradley, M. Isopenicillin N synthase: mechanistic studies. Chem. Rev. 1990, 90, 1079-1088.
    (11) Roach, P. L.; Clifton, I. J.; Hensgens, C. M. H.; Shibata, N.; Schofield, C. J.; Hajdu, J.; Baldwin, J. E. Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation. Nature 1997, 387, 827-830.
    (12) Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W. C.; Barr, E. W.; Xing, G.; St Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M., Jr.; Krebs, C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J. Am. Chem. Soc. 2016, 138, 8862-8874.
    (13) Seto, H.; Kuzuyama, T. Bioactive natural products with carbon–phosphorus bonds and their biosynthesis. Natural Product Reports 1999, 16, 589-596.
    (14) Cicchillo, R. M.; Zhang, H.; Blodgett, J. A. V.; Whitteck, J. T.; Li, G.; Nair, S. K.; van der Donk, W. A.; Metcalf, W. W. An unusual carbon–carbon bond cleavage reaction during phosphinothricin biosynthesis. Nature 2009, 459, 871-874.
    (15) Miller, M. A.; Lipscomb, J. D. Homoprotocatechuate 2,3-Dioxygenase from Brevibacterium fuscum: A DIOXYGENASE WITH CATALASE ACTIVITY. J. Biol. Chem. 1996, 271, 5524-5535.
    (16) Christian, G. J.; Ye, S.; Neese, F. Oxygen activation in extradiol catecholate dioxygenases – a density functional study. Chemical Science 2012, 3, 1600-1611.
    (17) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55-60.
    (18) McEvoy, J. P.; Gascon, J. A.; Batista, V. S.; Brudvig, G. W. The mechanism of photosynthetic water splitting. Photochemical & Photobiological Sciences 2005, 4, 940-949.
    (19) Dau, H.; Iuzzolino, L.; Dittmer, J. The tetra-manganese complex of photosystem II during its redox cycle – X-ray absorption results and mechanistic implications. Biochim. Biophys. Acta 2001, 1503, 24-39.
    (20) Whiting, A. K.; Boldt, Y. R.; Hendrich, M. P.; Wackett, L. P.; Que, L. Manganese(II)-Dependent Extradiol-Cleaving Catechol Dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 1996, 35, 160-170.
    (21) Emerson, J. P.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.; Que, L. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7347.
    (22) Gunderson, W. A.; Zatsman, A. I.; Emerson, J. P.; Farquhar, E. R.; Que, L.; Lipscomb, J. D.; Hendrich, M. P. Electron Paramagnetic Resonance Detection of Intermediates in the Enzymatic Cycle of an Extradiol Dioxygenase. J. Am. Chem. Soc. 2008, 130, 14465-14467.
    (23) Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nature Communications 2014, 5, 5440.
    (24) Chiang, C. W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P. Y.; Bominaar, E. L.; Que, L., Jr.; Munck, E.; Lee, W. Z. Characterization of a Paramagnetic Mononuclear Nonheme Iron-Superoxo Complex. J. Am. Chem. Soc. 2014, 136, 10846-10849.
    (25) Stout, H. D.; Kleespies, S. T.; Chiang, C.-W.; Lee, W.-Z.; Que, L.; Münck, E.; Bominaar, E. L. Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex. Inorg. Chem. 2016, 55, 5215-5226.
    (26) Luo, Y.-R.: Handbook of bond dissociation energies in organic compounds; CRC press, 2002.
    (27) Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew. Chem. Int. Ed. 2015, 54, 7336-7339.
    (28) Blakely, M. N.; Dedushko, M. A.; Yan Poon, P. C.; Villar-Acevedo, G.; Kovacs, J. A. Formation of a Reactive, Alkyl Thiolate-Ligated FeIII-Superoxo Intermediate Derived from Dioxygen. J. Am. Chem. Soc. 2019, 141, 1867-1870.
    (29) Liu, L.-L.; Li, H.-X.; Wan, L.-M.; Ren, Z.-G.; Wang, H.-F.; Lang, J.-P. A Mn(iii)–Superoxo Complex of a Zwitterionic Calix[4]arene with an Unprecedented Linear End-On Mn(iii)–O2 Arrangement and Good Catalytic Performance for Alkene Epoxidation. Chem. Commun. 2011, 47, 11146-11148.
    (30) Coggins, M. K.; Sun, X.; Kwak, Y.; Solomon, E. I.; Rybak-Akimova, E.; Kovacs, J. A. Characterization of Metastable Intermediates Formed in the Reaction between a Mn(II) Complex and Dioxygen, Including a Crystallographic Structure of a Binuclear Mn(III)–Peroxo Species. J. Am. Chem. Soc. 2013, 135, 5631-5640.
    (31) Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen. J. Am. Chem. Soc. 2008, 130, 8888-8889.
    (32) Blakely, M. N.; Dedushko, M. A.; Yan Poon, P. C.; Villar-Acevedo, G.; Kovacs, J. A. Formation of a Reactive, Alkyl Thiolate-Ligated Fe(III)-Superoxo Intermediate Derived from Dioxygen. J. Am. Chem. Soc. 2019, 141, 1867-1870.
    (33) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.; Takui, T.; Itoh, S. Mononuclear Copper(II)−Superoxo Complexes that Mimic the Structure and Reactivity of the Active Centers of PHM and DβM. J. Am. Chem. Soc. 2009, 131, 2788-2789.
    (34) Peterson, R. L.; Himes, R. A.; Kotani, H.; Suenobu, T.; Tian, L.; Siegler, M. A.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D. Cupric Superoxo-Mediated Intermolecular C−H Activation Chemistry. J. Am. Chem. Soc. 2011, 133, 1702-1705.
    (35) Tano, T.; Okubo, Y.; Kunishita, A.; Kubo, M.; Sugimoto, H.; Fujieda, N.; Ogura, T.; Itoh, S. Redox Properties of a Mononuclear Copper(II)-Superoxide Complex. Inorg. Chem. 2013, 52, 10431-10437.
    (36) Cho, J.; Woo, J.; Nam, W. A Chromium(III)–Superoxo Complex in Oxygen Atom Transfer Reactions as a Chemical Model of Cysteine Dioxygenase. J. Am. Chem. Soc. 2012, 134, 11112-11115.
    (37) Pirovano, P.; Magherusan, A. M.; McGlynn, C.; Ure, A.; Lynes, A.; McDonald, A. R. Nucleophilic Reactivity of a Copper(II)–Superoxide Complex. Angew. Chem. Int. Ed. 2014, 126, 6056-6060.
    (38) Bailey, W. D.; Gagnon, N. L.; Elwell, C. E.; Cramblitt, A. C.; Bouchey, C. J.; Tolman, W. B. Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. Inorg. Chem. 2019, 58, 4706-4711.
    (39) Cao, R.; Elrod, L. T.; Lehane, R. L.; Kim, E.; Karlin, K. D. A Peroxynitrite Dicopper Complex: Formation via Cu-NO and Cu-O2 Intermediates and Reactivity via O-O Cleavage Chemistry. J. Am. Chem. Soc. 2016, 138, 16148-16158.
    (40) Sharma, S. K.; Schaefer, A. W.; Lim, H.; Matsumura, H.; Moënne-Loccoz, P.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Karlin, K. D. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO(g)) with a Ferric-Superoxide Species. J. Am. Chem. Soc. 2017, 139, 17421-17430.
    (41) Liu, J. J.; Siegler, M. A.; Karlin, K. D.; Moenne-Loccoz, P. Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O2 and NO and Mechanistic Insights into Metal-Mediated Peroxynitrite Decomposition. Angew. Chem. Int. Ed. 2019, 58, 10936-10940.
    (42) Peterson, R. L.; Ginsbach, J. W.; Cowley, R. E.; Qayyum, M. F.; Himes, R. A.; Siegler, M. A.; Moore, C. D.; Hedman, B.; Hodgson, K. O.; Fukuzumi, S.; Solomon, E. I.; Karlin, K. D. Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper-Dioxygen Adduct. J. Am. Chem. Soc. 2013, 135, 16454-16467.
    (43) Bailey, W. D.; Dhar, D.; Cramblitt, A. C.; Tolman, W. B. Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex. J. Am. Chem. Soc. 2019, 141, 5470-5480.
    (44) Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. J. Am. Chem. Soc. 2018, 140, 8372-8375.
    (45) Liu, Y.; Lau, T. C. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J. Am. Chem. Soc. 2019, 141, 3755-3766.
    (46) Fukuzumi, S.; Ohkubo, K.; Lee, Y. M.; Nam, W. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates. Chem. Eur. J. 2015, 21, 17548-17559.
    (47) Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Tuning Electron-Transfer Reactivity of a Chromium(III)-Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J. Am. Chem. Soc. 2020, 142, 365-372.
    (48) Zhang, Y.-X.; Du, D.-M.; Chen, X.; Lü, S.-F.; Hua, W.-T. Enantiospecific synthesis of pyridinylmethyl pyrrolidinemethanols and catalytic asymmetric borane reduction of prochiral ketones. Tetrahedron: Asymmetry 2004, 15, 177-182.
    (49) Park, J. K.; Lee, H. G.; Bolm, C.; Kim, B. M. Asymmetric diethyl- and diphenylzinc additions to aldehydes by using a fluorine-containing chiral amino alcohol: a striking temperature effect on the enantioselectivity, a minimal amino alcohol loading, and an efficient recycling of the amino alcohol. Chem. Eur. J. 2005, 11, 945-950.
    (50) Mader, E. A.; Larsen, A. S.; Mayer, J. M. Hydrogen Atom Transfer from Iron(II)−Tris[2,2‘-bi(tetrahydropyrimidine)] to TEMPO:  A Negative Enthalpy of Activation Predicted by the Marcus Equation. J. Am. Chem. Soc. 2004, 126, 8066-8067.
    (51) Mair, R. D.; Graupner, A. J. Determination of Organic Peroxides by Iodine Liberation Procedures. Anal. Chem. 1964, 36, 194-204.
    (52) Das, D.; Lee, Y. M.; Ohkubo, K.; Nam, W.; Karlin, K. D.; Fukuzumi, S. Acid-induced mechanism change and overpotential decrease in dioxygen reduction catalysis with a dinuclear copper complex. J Am Chem Soc 2013, 135, 4018-4026.
    (53) Wang, C. C.; Chang, H. C.; Lai, Y. C.; Fang, H.; Li, C. C.; Hsu, H. K.; Li, Z. Y.; Lin, T. S.; Kuo, T. S.; Neese, F.; Ye, S.; Chiang, Y. W.; Tsai, M. L.; Liaw, W. F.; Lee, W. Z. A Structurally Characterized Nonheme Cobalt-Hydroperoxo Complex Derived from Its Superoxo Intermediate via Hydrogen Atom Abstraction. J. Am. Chem. Soc. 2016, 138, 14186-14189.
    (54) Duboc, C. Determination and prediction of the magnetic anisotropy of Mn ions. Chem. Soc. Rev. 2016, 45, 5834-5847.
    (55) Fielding, A. J.; Lipscomb, J. D.; Que, L. J. Characterization of an O2 adduct of an active cobalt-substituted extradiol-cleaving catechol dioxygenase. J. Am. Chem. Soc. 2012, 134, 796-799.
    (56) Emerson, J. P.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.; Que, L. J. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7347-7352.
    (57) Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Würtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorg. Chem. 2010, 49, 9450-9459.
    (58) Zhang, X.; Furutachi, H.; Fujinami, S.; Nagatomo, S.; Maeda, Y.; Watanabe, Y.; Kitagawa, T.; Suzuki, M. Structural and Spectroscopic Characterization of (μ-Hydroxo or μ-Oxo)(μ-peroxo)diiron(III) Complexes:  Models for Peroxo Intermediates of Non-Heme Diiron Proteins. J. Am. Chem. Soc. 2005, 127, 826-827.
    (59) Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Crystallographic and Spectroscopic Characterization and Reactivities of a Mononuclear Non-Haem Iron(III)-Superoxo Complex. Nat. Commun. 2014, 5, 5440-5547.
    (60) Bajdor, K.; Nakamoto, K.; Kanatomi, H.; Murase, I. Resonance raman spectra of molecular oxygen adducts of Co(salen) and its derivatives in solution. Inorg. Chim. Acta 1984, 82, 207-210.
    (61) Schatz, M.; Raab, V.; Foxon, S. P.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. Angew. Chem. Int. Ed. 2004, 43, 4360-4363.
    (62) Cho, J.; Woo, J.; Nam, W. An “End-On” Chromium(III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in C−H Bond Activation of Hydrocarbons. J. Am. Chem. Soc. 2010, 132, 5958-5959.
    (63) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42-55.
    (64) Bencini, A.; Gatteschi, D.; Springer, V.: Electron paramagnetic resonance of exchange coupled systems; Sringer-Verlag: Berlin; Heidelberg, 1990.
    (65) Kindermann, N.; Gunes, C. J.; Dechert, S.; Meyer, F. Hydrogen Atom Abstraction Thermodynamics of a mu-1,2-Superoxo Dicopper(II) Complex. J. Am. Chem. Soc. 2017, 139, 9831-9834.
    (66) Weyhermüller, T.; Paine, T. K.; Bothe, E.; Bill, E.; Chaudhuri, P. Complexes of an Aminebis(phenolate) [O,N,O] Donor Ligand and EPR Studies of Isoelectronic, Isostructural Cr(III) and Mn(IV) Complexes. Inorg. Chim. Acta 2002, 337, 344-356.
    (67) Duboc, C.; Collomb, M.-N. Multifrequency High-Field EPR Investigation of a Mononuclear Manganese(iv) Complex. Chem. Commun. 2009, 2715-2717.
    (68) Romain, S.; Baffert, C.; Duboc, C.; Leprêtre, J.-C.; Deronzier, A.; Collomb, M.-N. Mononuclear MnIII and MnIV Bis-terpyridine Complexes: Electrochemical Formation and Spectroscopic Characterizations. Inorg. Chem. 2009, 48, 3125-3131.
    (69) Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.; Kim, S. H.; Seo, M. S.; Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo complex. Angew. Chem. Int. Ed. 2010, 49, 8190-8194.
    (70) Gupta, R.; Taguchi, T.; Borovik, A. S.; Hendrich, M. P. Characterization of Monomeric MnII/III/IV–Hydroxo Complexes from X- and Q-Band Dual Mode Electron Paramagnetic Resonance (EPR) Spectroscopy. Inorg. Chem. 2013, 52, 12568-12575.
    (71) Dolai, M.; Amjad, A.; Debnath, M.; Tol, J. v.; Barco, E. d.; Ali, M. Water-Stable Manganese(IV) Complex of a N2O4-Donor Non-Schiff-Base Ligand: Synthesis, Structure, and Multifrequency High-Field Electron Paramagnetic Resonance Studies. Inorg. Chem. 2014, 53, 5423-5428.
    (72) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.; Yano, J.; Hendrich, M. P.; Borovik, A. S. High-spin Mn–oxo complexes and their relevance to the oxygen-evolving complex within photosystem II. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5319-5324.
    (73) Zlatar, M.; Gruden, M.; Vassilyeva, O. Y.; Buvaylo, E. A.; Ponomarev, A. N.; Zvyagin, S. A.; Wosnitza, J.; Krzystek, J.; Garcia-Fernandez, P.; Duboc, C. Origin of the Zero-Field Splitting in Mononuclear Octahedral MnIV Complexes: A Combined Experimental and Theoretical Investigation. Inorg. Chem. 2016, 55, 1192-1201.
    (74) Leto, D. F.; Massie, A. A.; Colmer, H. E.; Jackson, T. A. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear MnIV-oxo and MnIV-hydroxo Complexes and Quantum Chemical Investigation of MnIV Zero-Field Splitting. Inorg. Chem. 2016, 55, 3272-3282.
    (75) Oswald, V. F.; Weitz, A. C.; Biswas, S.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. Manganese–Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg. Chem. 2018, 57, 13341-13350.
    (76) Urban, M. W.; Nakamoto, K.; Basolo, F. Infrared spectra of molecular oxygen adducts of (tetraphenylporphyrinato)manganese(II) in argon matrixes. Inorg. Chem. 1982, 21, 3406-3408.
    (77) Lee, C. M.; Chuo, C. H.; Chen, C. H.; Hu, C. C.; Chiang, M. H.; Tseng, Y. J.; Hu, C. H.; Lee, G. H. Structural and Spectroscopic Characterization of a Monomeric Side-On Manganese(IV) Peroxo Complex. Angew. Chem. Int. Ed. 2012, 51, 5427-5430.
    (78) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910.
    (79) Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pKa values in organic chemistry – Making maximum use of the available data. Tetrahedron Lett. 2018, 59, 3738-3748.
    (80) Kindermann, N.; Dechert, S.; Demeshko, S.; Meyer, F. Proton-Induced, Reversible Interconversion of a μ-1,2-Peroxo and a μ-1,1-Hydroperoxo Dicopper(II) Complex. J. Am. Chem. Soc. 2015, 137, 8002-8005.
    (81) Kim, H.; Rogler, P. J.; Sharma, S. K.; Schaefer, A. W.; Solomon, E. I.; Karlin, K. D. Heme-Fe(III) Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe(III)-O2(*-) Complex H-Atom Abstraction Reactivity. J. Am. Chem. Soc. 2020, 142, 3104-3116.
    (82) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chem. Rev. 2010, 110, 6961-7001.
    (83) Stenkamp, R. E. Dioxygen and Hemerythrin. Chem. Rev. 1994, 94, 715-726.
    (84) Takano, Y.; Isobe, H.; Yamaguchi, K. Theoretical Studies on Electronic Structures and Chemical Indices of the Active Site of Oxygenated and Deoxygenated Hemerythrin. Bull. Chem. Soc. Jpn. 2008, 81, 91-102.
    (85) Howard, J. B.; Rees, D. C. Perspectives on Non-Heme Iron Protein Chemistry. Adv. Protein Chem. 1991, 42, 199-280.
    (86) Reem, R. C.; McCormick, J. M.; Richardson, D. E.; Devlin, F. J.; Stephens, P. J.; Musselman, R. L.; Solomon, E. I. Spectroscopic Studies of the Coupled Binuclear Ferric Active Site in Methemerythrins and Oxyhemerythrin: The Electronic Structure of Each Iron Center and the Iron-Oxo and Iron-Peroxide Bonds. J. Am. Chem. Soc. 1989, 111, 4688-4704.
    (87) Nocek, J. M.; Kurtz, D. M.; Sage, J. T.; Debrunner, P. G.; Maroney, M. J.; Que, L. Nitric oxide Adduct of the Binuclear Iron Center in Deoxyhemerythrin from Phascolopsis gouldii. Analog of a Putative Intermediate in the Oxygenation Reaction. J. Am. Chem. Soc. 1985, 107, 3382-3384.
    (88) Jasniewski, A. J.; Que, L., Jr. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem. Rev. 2018, 118, 2554-2592.
    (89) Fukuzumi, S.; Ohkubo, K.; Lee, Y.-M.; Nam, W. Lewis Acid Coupled Electron Transfer of Metal–Oxygen Intermediates. Chem. Eur.J. 2015, 21, 17548-17559.
    (90) Fukuzumi, S.; Ohkubo, K. Quantitative Evaluation of Lewis Acidity of Metal Ions Derived from the g Values of ESR Spectra of Superoxide: Metal Ion Complexes in Relation to the Promoting Effects in Electron Transfer Reactions. Chem. Eur.J. 2000, 6, 4532-4535.

    無法下載圖示 電子全文延後公開
    2025/07/13
    QR CODE