簡易檢索 / 詳目顯示

研究生: 游立椿
Yu, Li-Chun
論文名稱: 不同蹲踞式起跑動作加速期之生物力學分析
Biomechanical analysis of the acceleration period of different crouching start patterns
指導教授: 蔡虔祿
Tsai, Chien-Lu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 127
中文關鍵詞: 蹲踞式起跑起跑架踏板距離發力率
英文關鍵詞: Crouching Start, Starting Blocks, Pedals Distance, RFD
DOI URL: http://doi.org/10.6345/NTNU201900130
論文種類: 學術論文
相關次數: 點閱:140下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究主要目的在探討不同蹲踞式起跑動作對起跑出發階段以及起跑後加速度階段之差異。方法:受試者為8名大學田徑隊短距離男子選手(身高:173.16±4.77公分;體重:65.55±4.52公斤;年齡:20.06±1.09歲),實驗中,起跑出發階段與起跑後加速度階段分別使用1部iX Cameras, i-SPEED 210高速攝影機(250Hz)和3部CASIO, EX-ZR100高速攝影機(240Hz),分別收集起跑出發階段至起跑後加速度階段前三步以及起跑後加速度15、25、35公尺動作影像資料,再以Kwon 3D軟體計算相關運動學參數。而起跑架前、後踏板反作用力則是以40片壓力感測片(前、後各安裝20片),擷取頻率1000Hz,收集踏板動力學資料,另於0-60公尺架設6部樹莓派相機(30Hz),擷取每10公尺區間之分段時間資料。實驗數據以無母數統計弗里曼二因子等級變異數分析,比較起跑模式間的差異,若有達到顯著差異,則進行事後比較,事後比較採等級平均數法進行,顯著水準為 α=.05。結果與討論:結果顯示不同起跑模式在預備階段,臀部及重心高度會直接影響前、後腳髖、膝、踝關節角度,進而影響鳴槍後相關動力學參數與起跑後前三步步幅、著地重心速度以及15、25、35公尺平均步幅。在起跑出發階段,長式的身體重心位移距離長,重心速度快,後腳推蹬踏板產生的初始發力率、最大發力率較大;但短式起跑的時間有最短的趨勢。在起跑後加速度階段,長式起跑第一步步幅大、前二步著地重心速度快;至於起跑出發階段銜接起跑後加速度階段則以中式起跑法在0-60公尺時間表現上,有較佳的表現。結論與建議:結果發現短式起跑有較佳的起動表現;而中式起跑可以增加起跑出發階段銜接起跑後的加速穩定性。建議我國的選手未來可以在起跑出發階段方面,改變起跑架前踏板與起跑線的距離為 1.5個足長,以利整體起跑出發表現。

    Purpose: The purposes of this study were to compare the differences among the different crouching start block patterns in the starting phase and the acceleration phase after the trigger.
    Methods: Eight collegiate track and field short-distance runners served as the participants (height: 173.16±4.77 cm; weight: 65.55±4.52 kg; age: 20.06±1.09 years old). One iX Cameras, i-SPEED 210 high-speed camera (250 Hz) and three CASIO, EX-ZR100 high-speed cameras (240 Hz) were used in the starting phase and the post-start acceleration phase, respectively. The kinematic variables of the start and the acceleration phase and the 15, 25, 35m motion image data were calculated by Kwon 3D software. Twenty pieces of reaction tranducer sensors (1000Hz) were installed on the front and rear pedals each of the start block to measured the reaction force during start phase. Six Raspberry Pi cameras (30 Hz) collected every 10m interval duration time from 0-60m. The experimental data were compared by the Friedman two-way analysis of variance by ranks nonparametric statistical test among the different patterns at a .05 significant level. Results and discussion: The results showed that the different starting modes were in the set stage, and the hip and COM directly affect the angles of the hips, knees and ankles of the front and rear feet, and the kinetic parameters after the trigger. That might influence the performance of the first three steps after the start, the speed of the center of gravity and the average stride length of 15, 25, 35 meters. Since we found that the kinematics and dynamics parameters were better in the starting phase in the elongated start mode, but the overall starting time was better in the shorten mode. Conclusions and Suggestions: From the results, we found there were no significant differences among the four starting mode. The shorten mode seemed performed the fastest trend in the start phase of the starting. The medium start mode could maintain the connection between the starting phase and the acceleration phase after the start in increasing velocity of the start and the stability during the start and the acceletaion phase of the sprint. We recommend that changing the distance between the front pedal and the start line to one and half foot length to increase the performance of the sprint start.

    第壹章 緒論 1 第一節 前言 1 第二節 問題背景 8 第三節 研究目的 9 第四節 研究範圍 12 第五節 研究限制 13 第六節 名詞操作性定義 13 第貳章 文獻探討 18 第一節 各就位階段相關文獻 18 第二節 預備階段相關文獻 19 第三節 鳴槍階段相關文獻 21 第四節 起跑後加速度相關文獻 23 第五節 文獻總結 25 第參章 研究方法與步驟 26 第一節 研究對象 26 第二節 實驗時間與地點 26 第三節 實驗儀器設備 27 第四節 實驗場地佈置與說明 30 第五節 研究架構 33 第六節 實驗流程說明 34 第七節 資料收集方法 36 第八節 資料處理方法 39 第九節 統計方法 42 第肆章 結果與討論 43 第一節 各就位階段 43 第二節 預備階段 45 第三節 鳴槍階段 51 第四節 起跑後加速度階段 74 第五節 參數之相關分析 105 第伍章 結論與建議 113 引用文獻 115 附錄一 研究倫理審查核可證明書 122 附錄二 研究口頭招募說明 123 附錄三 研究參與者知情同意書 124

    李誠志、黃宗成(1986)。研究百米技術的方法。四川體育科學學報,3(4),13-19。
    許樹淵(1992)。田徑論。台北市:偉彬體育研究社。
    劉宇、陳重佑、莊榮仁、黃長福(1998)。國術騰空飛腳動作運動控制與協調系列研究之二-關節控制力矩及其協同作用效果的肢段間互動動力學研究。體育學報,26,241-248。
    陳維科(2000)。100m跑的生物力學分析。固原師範學報,21(3),90-93。
    姬榮軍、簡岑如(2001)。不同步幅長度對起跑出發之運動學探討。師大體育,45,23-30。
    游立椿、蔡虔祿、張家豪(2007)。三種蹲距式踏板距離起跑之動力學分析。運動教練科
    學,8,37-46。
    游立椿(2007)。三種踏板距離蹲距式起跑之生物力學分析。未出版碩士論文。台北市: 國立臺灣師範大學體育學系。
    陳佑、吳光亞、蔡於儒、楊文添、張家豪(2013)。三種不同蹲踞距離起跑之運動學分析。 體育學報,46(1),23-32。
    游立椿、蔡虔祿(2018a)。不同踏板長度蹲踞式起跑之運動學分析。華人運動生物力學, 15(1),14-22。
    游立椿、蔡虔祿(2018b)。三種踏板踩踏高度對蹲踞式起跑之影響。運動表現期刊,5(2), 59-66。
    Atwater, A.E. (1982). Kinematic analyses of sprinting. Track Field Q. Rev, 82, 12-16. Aura O and Viitasalo JT. (1989). Biomechanical characteristics of jumping. Int J Sports Biomech, 5, 89–97.
    Ae M, Ito A, Suzuki M. (1992). The men’s 100 meters: Scientific research project at the 3rd World Championship in Athletics, Tokyo 1991. New Stud. Athl., 7, 47-52.
    Aagaard P, Simonsen EB, Andersen JL, et al.(2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol, 93(4), 1318–26.
    Aagaard P. (2003). Training-induced changes in neural function. Exerc Sport Sci Rev, 31(2), 61–7.
    Andersen LL, Aagaard P. (2006). Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol, 96(1), 46–52.
    Aerenhouts, D., Delecluse, C., Hagman, F., Taeymans, J., Debaere, S., Van Gheluwe., B., & larys, P. (2012). Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. European Journal of Sport Science, 12, 9-15.
    Ballreich, R. (1969). Weg und Zeitmerkmale von Sprintbewegungen. Berlin : Bartels and Warnitz.
    Baumann W. (1976). Kinematic and dynamic characteristics of the sprint start. In Komi PV (Ed) Biomechanics V-B, University Park Press. Baltimore.
    Baumann W. (1979). Sprint start characteristics of female sprinters. In: Ayalon A (Ed) Proceedings of an International Seminar in Biomechanics of Sport Games and Sport Activities, Wingate Institute, Israel.
    Borzov V. (1980). Optimal starting position. Mod. Athlete. Coach, 18, 4-5.
    Brüggemann GP, Glad B. (1990). Time analysis of sprint events: Scientific research project at the games of the XXIVth Olympiad Seoul 1988. New Stud Athl, 5, 27-55.
    Brown, I.E., & Loeb, G.E. (2000). Measured and modeled properties of mammalian skeletal muscle: IV. Dynamics of activation and deactivation. Journal of Muscle Research and Cell Motility, 21, 33-47.
    Boisnoir, A, Decker, L, Reine, B, and Natta, F. (2007). Validation of an integrated experimental set-up for kinetic and kinematic threedimensional analyses in a training environment. Sports Biomech, 6, 215–223.
    Brown, A.M., Kenwell, Z.R., Maraj, B.K.V. and Collins, D.F. (2008). “Go” Signal Intensity Influences the SprintStart. Medicine and Science in Sports and Exercise, 40(6), 1142-1148.
    Cavanagh, P., and R. KRAM. (1989). Stride length in distance running: velocity, body dimensions, and added mass effects. Med. Sci Sports Exerc, 21, 467–479.
    Č oh, M, Josˇt, B,S ˇ kof, B, Tomaž in, K, and Dolenec, A. (1998). Kinematic and kinetic parameters of the sprint start and start acceleration model of top sprinters. Gymnica, 28, 33–42.
    Čoh, M. (2001). Biomehanics of athletics. Ljubljana: Fakultet za šport.
    Cousins, S., & Dyson, R. (2004). Forces at the front and rear blocks during the sprint start. Proceedings for the 2004 ISBS Conference, Ottawa, Canada, 198-210.
    Cronin J, Sleivert G.(2005). Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med, 35, 213-234.
    Č oh, M, Tomaž in, K, and Sˇtuhec, S. (2006). The biomechanical model of the sprint start and block acceleration. Phys Educ Sport, 4, 103–114.
    Čoh, M., & Tomažin, K. (2008). Biodynamic characteristics of female sprinters during the acceleration phase and maximum speed phase. In M. Čoh (Ed.), Biomehanical diagnostic methods in athletic training, University of Ljubljana, 125-133.
    Dickinson, A.D. (1934). The effect of foot spacing on the starting time and speed in sprinting and the relation of physical measurements to foot spacing . Res .Q, 5(1), 9-12 .
    Delecluse, C, Coppenolle, H, Diels, R, and Goris, M. (1992). A model for the scientific preparation of high level sprinters. New Stud Athletics, 7, 57–64.
    Delecluse, C. H., Coppenolle, H. V., Willems, E., Diels, R., Goris, M., Leemputte, M. V., and Vuylsteke, M. (1995). Analysis of 100 meter sprint performance as a multi-dimensional skill. J. Hum. Mov. Stud., 28, 87-101.
    Delecluse, C. (1997). Influence of strength training on sprint running performance. Current findings and implications for training. Sports Med, 24, 147–156.
    Eikenberry, A., Mcauliffe, J., Welsh, T.N., Zerpa, C., McPherson, M. and Newhouse, I., (2008). Starting with the “Right” Foot Minimizes Sprint Start Time. Acta Psychologica, 127, 495-500.
    Eriksen, HK, Kristiansen, JR, Langangen, O, and Wehus, IK. (2009). Velocity dispersions in a cluster of stars: how fast could Usain Bolt have run? American Journal of Physicsv, 77(3), 1–5.
    Gollnick,P.D. and Kappovick,P.V. (1964). Electrogoniometric study of locomotion and of solne athletic movements. Res Quart, 35, 357-369.
    Gordon, J.A. (1972). Track and field (2nd ed.). Boston: Allyn and Bacon.
    Gambetta, V., Winckler, G., Rogers, J., Orognen, J., Seagrave, L., & Jolly, S. (1989). Sprints and relays. In V. Gambetta (Ed.), The Athletics Congress’s track and field coaching manual (2nd ed.) (pp. 55-71). Champaign, IL: Human Kinetics.
    Guissard, N, Duchateau, J, and Hainaut, K. (1992). EMG and mechanical changes during sprint starts at different front block obliquities. Med Sci Sports Exerc, 24, 1257–1263.
    Gajer, B., Theá paut-Mathieu, C., and Leheá naŠ, D. (1999). Evolution of stride and amplitude during course of the 100 m event in athletics. New Stud. Athl., 14, 43-50.
    Guthrie, M. (2003). Coaching track & field successfully. University of Wisconsin at La Crosse: Human Kinetics.
    Graham-Smith, P., Brandner, C., Ryu, J. H., Gallagher, L. (2017). Kinetic analysis of the block start and first two contacts in sprinting. Poster session presented at the35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany.
    Hay, J. G. (1993). Track and field, running. In the biomechanics of sports techniques (4th ed.), 396-411, New Jersey: Prentice Hall.
    Hay, J. G.(1994). The Biomechanics of Sports Techniques, 4th Ed, 31-46, 396-423, London: Prentice Hall .
    Harland M.J., Andrews M.H., Steele J.R. (1995). instrumented start blocks: A quantitative coaching aid. In: XIII International Symposium for Biomechanics in Sport. Ed: Bauer T. Ontario, 367-370.
    Harland M.J. and Steele J.R.(1997) Biomechanics of the sprint start. Sports Medicine, 23(1), 11–20.
    Hunter, J. P.,Marshall, R. N., andMcNair, P. J. (2004a). Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc., 36(2), 261-271.
    Hunter, J. P., Marshall, R. N., & McNair, P. J. (2004b). Segment-interaction analysis of thestance limb in sprint running. Journal of Biomechanics, 37(9), 1439-1446.
    Ingen Schenau GJ, de Koning JJ, de Groot G. (1994). Optimisation of sprinting performance in running, cycling and speed skating. Sports Med, 17, 259–75.
    Korchemny, R. (1992). A new concept for sprint start and acceleration training. New Studies in Athletics, 7(4), 65-72.
    Kraan, GA, van Veen, J, Snijders, CJ, and Storm, J. (2001). Starting from standing; why step ackwards? J Biomech, 34, 211–215.
    Krzysztof, M., & Mero, A. (2013). A kinematic anlaysis of three best 100 m performances ever. Journal of Human Kinetics, 36, 149-160.
    Lockie RG, Murphy AJ, Spinks CD. (2003). Effects of resisted sled towing on sprint kinematics in fi eld-sport athletes. J Strength Cond Res. 17(4), 760-767.
    Mero A, Luhtanen P, Komi PV. (1983). A biomechanical study of the sprint start. Scandinavian Journal of Sports Sciences, 5(1), 20-28.
    Mann, R. and Herman, J. (1985). Kinematic analysis of Olympic sprint performance, Men's 200 meters. Int. J. Sport Biomech., 1, 151-162.
    Mann, R.A., Moran, G.T., & Dougherty, S.E. (1986). Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am. J. Sport Med., 14, 501–510.
    Moravec P, Ruzicka J, Susanka P, Dostal E, Kodejs M, Nosek M. (1988). The 1987 International Athletic Foundation/IAAF Scientific Project Report: time analysis of the 100 metres events at the II World Championships in Athletics. New Studies in Athletics, 3, 61-96.
    Mero, A. (1988). Force-Time Characteristics and Running Velocity of Male Sprinters during the Acceleration Phase of Sprinting. Research Quarterly, 59(2), 94-98.
    Mero, A.; Komi, P. (1990). Reaction time and electromyographic activity during a sprint start. European Journal of Applied Physiology, 61, 73-80.
    Martín-Acero, R. (1991). Carreras de velocidad. Barcelona: Centro de Alto Rendimiento.
    Mero, A, Komi, PV, and Gregor, RJ. (1992). Biomechanics of sprint running. A review. Sports Med, 13, 376–392.
    Merni F., Cicchella A., Ciacci S., Bombardi F., Magenti L., Olmucci A., Coppini L. (1992). Kinematic and dynamic analysis of sprint start. In: ISBS ’92 proceedings of the 10th Symposium of the International Society of Biomechanics in Sports. R. Rodano, ed. Edi-Ermes, Milan, Italy, pp. 120–123.
    McClements, J.; Sanders, L.; Gander B. (1996). Kinetic and kinematic factors related to sprint starting as measured by Saskatchewan Sprint Start Team. New Studies in Athletics, 11 (2-3), 133-135.
    Mero, A., Kuitunen, S., Harland, M., Kyrolainen, H. and Komi, P.V. (2006). Effects of Muscle-Tendon Length and Joint Moment and Power During Sprint Starts. Journal of Sports Sciences, 24(20), 165-174.
    Mackala, K. (2007). Optimisation of performance through kinematic analysis of the different phases of the 100 metres. New Studies in Athletics, 22(2), 7–16.
    McCaulley GO, Cormie P, Cavill MJ, Nuzzo JL, Urbiztondo ZG, and McBride JM. (2007). Mechanical efficiency during repetitive vertical jumping. Eur J Appl Physiol, 101, 115– 123.
    McBride JM,McCaulleyGO, and Cormie P. (2008). Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res, 23, 750–757.
    Majumdar, A. S., & Robergs, R. A. (2011). The science of speed: determinants of performance in the 100 m sprint. International Journal of Sports Science & Coaching, 6(3), 479–494.
    Morin, J. B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., and Lacour, J. R. (2012). Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol., 112, 3921-3930.
    Milanese, C., Bertucco, M., & Zancanaro, C. (2014). The effects of three different rear knee angles on kinematics in the sprint start. Biology of Sport, 31(3), 209-215.
    Martı´nez-Valencia MA, Romero-Arenas S, Elvira JL, et al.(2015). Effects of sled towing on peak force, the rate of force development and sprint performance during the acceleration phase. J Hum Kinet, 46(1), 139–48.
    Neptune, R.R., & Kautz, S.A. (2001). Muscle activation and deactivation dynamics: The governing properties in fast cyclical human movement performance? Exercise and Sport Science Reviews, 29, 76-81.
    Nagahara, R., Matsubayashi, T., Matsuo, A., & Zushi, K. (2014). Kinematics of transition during human accelerated sprinting. Biology Open, 3(8), 689–699.
    Pascua, M. (1998). Las carreras de velocidad. In J. Bravo (Ed.), Atletismo I: Carreras y marcha (pp. 25-90). Madrid: Real Federacion Espanola de Atletismo.
    Parry, T. E.; Henson, P. & Cooper, J. (2003). Lateral foot placement analysis of the sprint start. New Studies in Athletics, 18(1), 13-22.
    Rabita, G., Dorel, S., Slawinski, J., Sàez-de-Villarreal, E., Couturier, A., Samozino, P., & Morin, J. B. (2015). Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scandinavian Journal of Medicine & Science in Sports, 25(5), 583–594.
    Schmolinsky, G. (1978). Track and field. Berlin: Sportverlag.
    Shen W.(2000). The effects of stride length and frequency on the speeds of elite sprinters in 100 meter dash. In Biomechanical proceedings of XVIII International Symposium of Biomechanics in Sports (ISBS). Hong Kong, 333-336.
    Stone MH, Stone M, Sands WA. (2007). Principles and practice of resistance training. Champaign: Human Kinetics.
    SchiŠer, J. (2009). The Sprints. New Stud. Athl., 24, 7-17.
    Slawinski, J., Bonnefoy, A., Leveque, J., Ontanon, G., Riquet, A., Dumas, R.,Cheze, L. (2010). Kinematic and kinetic comparison of elite and well-trained sprinter during sprint start. Journal of Strength and Conditioning Research, 24, 896-905.
    Steffen Willwacher, Volker Herrmann, Kai Heinrich, Johannes Funken,Wolfgang Potthast, Ian Bezodis, Gerda Strutzenberger Gareth Irwin, Gert-Peter Brüggemann (2015, July). Sprint Start Kinetics: Comparison of Amputee and Non-Amputee Sprinters. Floren Colloud, Mathieu Domalain & Tony Monnet (Editors), Coaching and Sports Activities, 33rd International Conference on Biomechanics in Sports, Poitiers, France, 1316-1319.
    Suchomel TJ, Nimphius S, Stone MH. (2016). The Importance of Muscular Strength in Athletic Performance. Sports Med, [Epub. ahead of print], 1-31.
    Salo, A.I.T., Gayen, M., Patterson, J., & Wilson, C. (2016). Should athletes use their stronger leg on the front block during the sprint start? In: M. Ae, Y. Enomoto, N. Fujii & H. Takagi (Eds.). Proceedings of the XXXIV International Conference on Biomechanics in Sports. Tsukuba, Japan.
    Salo, A. I., Colyer, S. L., Chen, P., Davies, A. M., Morgan, M. F., & Page, S. (2017). Kinetic determinants of athletics sprint start performance. Poster session presented at the 35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany.
    Siegel, S., & Castellan, N. J. (1989). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw-Hill. SPSS (2002). SPSS for Windows, version 11.0, SPSS, Inc., Chicago, IL.
    Thorstensson A, Karlsson J, Viitasalo JHT, et al. (1976). Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand, 98(2), 232–236.
    Tellez, T.; Doolittle, D. (1984). Sprinting from start to finish. Track Technique, 88, 2802-2805.
    Tekscan, Inc. (2010). FLEXIFORCE SENSORS USERS MANUAL Rve 1.
    Volkov NI, Lapin VI. (1979). Analysis of the velocity curve in sprint running. Medicine and Science in Sports, 11 (4), 332-337.
    Wood, G. (1987). Biomechanical limitations to sprint running. Medicine and Sport Science, B. van Gheluwe and J. Atha (Eds.), Basel:Karger, 58–71.
    Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). Canada: John Wiley & Sons, Inc.
    Willwacher, S., Hermann, V., Heinrich, K., & Brüggemann, G.-P. (2013). Start block kinetics: What the best do different than the rest. In T.-Y. Shiang, W.-H. Ho, P. C. Huang & C.-L. Tsai (Eds.), Proceedings of the XXXI International Conference on Biomechanics in Sports. Taipei, Taiwan.
    Young, W. (1992). Sprint bounding and the sprint bound index. National Strength and Conditioning Association Journal, 14(4), 18-21.
    Young W, McLean B, Ardagna J.(1995). Relationship between strength qualities and sprinting performance. J Sports Med Phys Fitness, 35, 13-19.
    Zatsiorsky V. (1995). Science and practice of strength training. Champaign: Human Kinetics.
    蘋果日報(2018)。楊俊瀚栽在起跑百公尺台灣亞運最快。取自 https://tw.appledaily.com/sports/daily/20180827/38109037/

    下載圖示
    QR CODE