簡易檢索 / 詳目顯示

研究生: 莊幼玲
Chuang, Yo-Ling
論文名稱: 彗星的時變性與新有機分子的毫米波段觀測
Millimeterwave Observations of Comets - Temporal Variations and New Organic Molecules
指導教授: 管一政
Kuan, Yi-Jehng
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 119
中文關鍵詞: cometradio observationinterferometry
英文關鍵詞: comet, radio observation, interferometry
DOI URL: http://doi.org/10.6345/DIS.NTNU.DES.002.2019.B07
論文種類: 學術論文
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    As primitive members of our solar system, comets are remnants from early solar system formation hence retain primordial compositions of proto-solar nebula. Comet study therefore can help us to understand the chemical and physical conditions in the early of solar system. To date, study of cometary compositions is mainly via ground-based observations of cometary coma, dust and ion tails. Unfortunately, with limited angular resolution, direct observations of cometary nucleus is unachievable in spite of a handful of comets were visited by spacecraft. Details of comet nucleus hence can only be inferred circuitously by observing coma activities; consequently our knowledge about the structure and chemical compositions of comet nuclei is still wanting. To better understand the nature of comet hence solar system formation, we have thus carried out millimeterwave observations of one Jupiter Family comet: 103P/Hartley 2, and three Oort Cloud comets: C/2007 N3 (Lulin), C/2009 P1 (Garradd) and C/2012 F6 (Lemmon), using the Kitt Peak 12m, SMT and ALMA. Additional comet data of two JFCs: 73P/Schwassmann-Wachmann 3 and 17P/Holmes were also included in our study.

    We observed multiple CH3OH transitions simultaneously toward comet 103P, Lulin and Garradd, in order to derive rotational temperatures which could be utilized as a thermometer of coma gas. Accurately measured excitation temperatures are important for deriving CH3OH column densities which are essential for determining temporal variations and possible periodicities of comets. Day-to-day variations of comet 103P and Garradd follow the trend of heliocentric distances. CH3OH data were split further into hourly intervals to investigate likely short-term variations of 103P and Garradd. By fast-Fourier transforming CH3OH column densities, we found temporal variations in periods of 6.7 and 13.5 hours for 103P, and 5.5 and 7.5 hours for Garradd. The multi-periodicity unveiled may result from multi-vent outgassing of CH3OH on nuclear surface. Better determined periodicity of Garradd was attained via HCN measurements instead of CH3OH; the periodicity of HCN variation is comparable with that of CH3OH which suggests HCN and CH3OH molecules are closely correlated in the nucleus. On the other hand, we may apply the Cometary Halo Icy Particles (CHIPs) scenario to explain the moderate variation of CH3OH emission and indistinct periodicity of Garradd when compared to 103P.

    Primary volatiles are molecular species stored as ices originally in cometary nucleus hence observations of gas-phase primary molecules offer the most direct connection to the proto-solar nebula. A large fraction of comets exhibit distinct spatial distributions of polar and apolar primary volatiles when volatiles were released into the inner coma. Native species sublimating from common nucleus ices situated in the same region of the comet nucleus would result in similar spatial distributions. By comparing the spatial distributions of various native molecules in the inner coma simultaneously, we will be able to unveil whether these primary species are related to distinct nucleus sources or not. We therefore used ALMA to observe the native volatiles HCN and CH3OH simultaneously in the inner coma of comet Lemmon and imaged their spectral variations in 18-minute time span. HCN and CH3OH are found to be concentrated on comet nucleus as anticipated. However, detailed spectral analysis indicates the apparent double-peak line profile of HCN actually consists of four velocity components in two separate sets, i.e. two velocity components in each set, or simply a line profile of “paired double peaks”, which imply strongly the existence of dual HCN outgassing vents in Lemmon’s nucleus. The highly similar HCN and CH3OH line profiles toward comet nucleus also suggests that HCN and CH3OH share a common nucleus source. Spectral images of HCN show outgassing from comet nucleus constantly while CH3OH emission reveals its clumpy distribution due to additional extended sources and fast-dispersing nature. Our high-resolution ALMA results support the CHIPs scenario that considers large amount of methanol may be sublimated from the surface of icy particles originated from nucleus outbursts.

    Last but not least, we have also detected a new cometary organic molecule, cyclopropenylidene (c-C3H2), in five different comets: 73P/S-W 3, 17P/Holmes, Lulin, 103P and Lemmon. We have successfully imaged cyclopropenylidene and disclosed its clumpy spatial distributions with the ALMA. Our ALMA images indicate that a large portion of c-C3H2 is either secondary or evaporated from the extended source in the coma. Potential sources of cometary cyclopropenylidene thus include: primordial c-C3H2 trapped in icy grains, decomposition of macromolecular organics from dust grains, and photodestruction product of large hydrocarbon polymers or aromatic compounds. Deuterated c-C3H2 is also detected in comet Lemmon with ALMA. The D/H ratio thus derived is of ~0.20 to 0.32 which is relatively high compared to the VSMOW value. The high D/H ratio, if confirmed, will be extremely important for our understanding of solar-system formation.

    Abstract i 1 Introduction 1 1.1 The Origin of Comet 1 1.1.1 Dynamic models of Solar System Formation 1 1.1.2 Chemical Compositions of Cometary Nucleus 3 1.1.3 The Physical Structure of Cometary Nucleus 6 1.2 Cometary Observations 8 1.2.1 The Jupiter-Family Comet 103P/Hartley2 8 1.2.2 The Oort-Cloud Comet C/2007 N3 (Lulin) 10 1.2.3 The Oort-Cloud Comet C/2009 P1 (Garradd) 12 1.2.4 The Oort-Cloud Comet C/2012 F6 (Lemmon) 13 2 Radio Observations and Data Reduction 15 2.1 SMT and KP12M 17 2.2 ALMA: Comet C/2012 F6 (Lemmon) 25 3 Rotational Temperatures of Methanol: Temporal Variations and Periodicity of Comets 31 3.1 Introduction 31 3.2 Observations 32 3.3 Results 33 3.3.1 CH3OH in Comet 103P/Hartley 2 33 3.3.2 CH3OH in Comet C/2007 N3 (Lulin) 38 3.3.3 CH3OH in Comet C/2009 P1 (Garradd) 41 3.3.4 Daily Based Rotational Temperatures and Abundances 45 3.3.5 Short-Term Variations and Possible Periodicity of Comet Activities 49 3.4 Discussion and Summary 54 4 The ALMA Imaging of Comet C/2012 F6 (Lemmon): Morphology of Molecules in the inner Coma 57 4.1 Introduction 57 4.2 Observations 61 4.3 Results 62 4.3.1 Morphologies of Thermal Dust Emission and Spectral Emission of HCN and CH3OH 62 4.4 Analysis and Discussions 71 4.4.1 Temporal Variations of HCN & CH3OH 71 4.4.2 Multiple double-peaked pair 72 4.4.3 Outflow Velocity 75 4.5 Discussions and Conclusion 84 5 Cyclopropenylidene in Comets 89 5.1 Introduction 89 5.1.1 73P/Schwassmann-Wachmann3 91 5.1.2 17P/Holmes 93 5.2 Results 93 5.2.1 C/2012N3 (Lulin) 93 5.2.2 103P/Hartley2 95 5.2.3 ALMA Observations of C/2012 F6 (Lemmon) 95 5.3 Discussion and Conclusion 99 Appendix A Single-Dish Molecular Measurement 103 Bibliography 113

    A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., et al. 2011, Science, 332, 1396
    A’Hearn, M. F., Feaga, L. M., Keller, H. U., et al. 2012, ApJ, 758, 29
    Bell, M. B., Avery, L. W., Matthews, H. E., et al. 1988, ApJ, 326, 924
    Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 2002, Earth Moon and Planets, 90, 323
    Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. 1999, AJ, 118, 1850
    Biver, N., Bockelée-Morvan, D., Debout, V., et al. 2014, A&A, 566, L5
    Bockelée-Morvan, D., Biver, N., Crovisier, J., et al. 2014, A&A, 562, A5
    Bockelée-Morvan, D., Lis, D. C., Wink, J. E., et al. 2000, A&A, 353, 1101
    Bodewits, D., Farnham, T. L., A’Hearn, M. F., et al. 2014, ApJ, 786, 48
    Bodewits, D., Mumma, M. J., Villanueva, G. L., et al. 2010, in Bulletin of the American Astronomical Society, Vol. 42, AAS/High Energy Astrophysics Division #11, 723
    Boehnhardt, H. 2004, Split comets, ed. M. C. Festou, H. U. Keller, & H. A. Weaver, 301–316
    Bonev, B. P., Mumma, M. J., Gibb, E. L., et al. 2009, ApJ, 699, 1563 Bøgelund, E. G. & Hogerheijde, M. R. 2017, A&A, 604, A131
Boissier, J., Bockelée-Morvan, D., Groussin, O., et al. 2013, A&A, 557, A88
    Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541 Boss, A. P. 1998, Annual Review of Earth and Planetary Sciences, 26, 53 Charnley, S. B. & Rodgers, S. D. 2008, Space Sci. Rev., 138, 59
    Chuang, Y.-L., Kuan, Y.-J., Cordiner, M. A., & Charnley, S. B. 2015, in Astronomical So- ciety of the Pacific Conference Series, Vol. 499, Revolution in Astronomy with ALMA: The Third Year, ed. D. Iono, K. Tatematsu, A. Wootten, & L. Testi, 305
    Clairemidi, J., Bréchignac, P., Moreels, G., & Pautet, D. 2004, Planet. Space Sci., 52, 761
    Clairemidi, J., Moreels, G., Mousis, O., & Bréchignac, P. 2008, A&A, 492, 245
    Cochran, A. L., Levasseur-Regourd, A.-C., Cordiner, M., et al. 2015, Space Sci. Rev., 197, 9
    Colangeli, L., Epifani, E., Brucato, J. R., et al. 1999, A&A, 343, L87
    Combi, M. R., Bertaux, J.-L., Quémerais, E., Ferron, S., & Mäkinen, J. T. T. 2011, ApJ, 734, L6
    Combi, M. R., Bertaux, J.-L., Quémerais, E., et al. 2014, AJ, 147, 126 Cordiner, M. A., Boissier, J., Charnley, S. B., et al. 2017, ApJ, 838, 147 Cordiner, M. A., Remijan, A. J., Boissier, J., et al. 2014, ApJ, 792, L2 Cottin, H. & Fray, N. 2008, Space Sci. Rev., 138, 179
    Crovisier, J., Bockelee-Morvan, D., Colom, P., Despois, D., & Paubert, G. 1993, A&A, 269, 527
    Crovisier, J. 1994, J. Geophys. Res., 99, 3777
    Crovisier, J. 2007, ArXiv Astrophysics e-prints
    Crovisier, J., Biver, N., Bockelée-Morvan, D., & Colom, P. 2009, Planet. Space Sci., 57, 1162
    Das, H. S., Medhi, B. J., Wolf, S., et al. 2013, MNRAS, 436, 3500
DiSanti, M. A., Villanueva, G. L., Bonev, B. P., et al. 2007, Icarus, 187, 240 Dones, L., Brasser, R., Kaib, N., & Rickman, H. 2015, Space Sci. Rev., 197, 191
    Dones, L., Weissman, P. R., Levison, H. F., & Duncan, M. J. 2004a, in Astronomical Society of the Pacific Conference Series, Vol. 323, Star Formation in the Interstellar Medium: In Honor of David Hollenbach, ed. D. Johnstone, F. C. Adams, D. N. C. Lin, D. A. Neufeeld, & E. C. Ostriker, 371
    Dones, L., Weissman, P. R., Levison, H. F., & Duncan, M. J. 2004b, Oort cloud formation and dynamics, ed. M. C. Festou, H. U. Keller, & H. A. Weaver, 153–174
    Drahus, M., Jewitt, D., Guilbert-Lepoutre, A., et al. 2011, ApJ, 734, L4
    Drahus, M., Jewitt, D., Guilbert-Lepoutre, A., Waniak, W., & Sievers, A. 2012, ApJ, 756, 80
    Ehrenfreund, P., Charnley, S. B., & Wooden, D. 2004, From interstellar material to comet particles and molecules, ed. G. W. Kronk, 115–133
    Farnham, T. L., Wellnitz, D. D., Hampton, D. L., et al. 2007, Icarus, 187, 26
    Fink, U., Doose, L., Rinaldi, G., et al. 2016, Icarus, 277, 78
    Garradd, G. J., Camilleri, P., Sostero, G., et al. 2009, Minor Planet Electronic Circulars, 2009
    Gibb, E. L., Bonev, B. P., Villanueva, G., et al. 2012, ApJ, 750, 102
Gicquel, A., Milam, S. N., Coulson, I. M., et al. 2015, ApJ, 807, 19
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466 Hartley, M. 1986, IAU Circ., 4197
    Haser, L. 1957, Bulletin de la Societe Royale des Sciences de Liege, 43, 740 115
    Hässig, M., Altwegg, K., Balsiger, H., et al. 2015, Science, 347, aaa0276 Helbert, J., Rauer, H., Boice, D. C., & Huebner, W. F. 2005, A&A, 442, 1107 Huebner, W. F., Keady, J. J., & Lyon, S. P. 1992, Ap&SS, 195, 1
Jewitt, D. & Luu, J. 1992, Icarus, 100, 187
    Joshi, U. C., Ganesh, S., & Baliyan, K. S. 2011, MNRAS, 412, L58
    Keller, H. U., Arpigny, C., Barbieri, C., et al. 1986, Nature, 321, 320
    Keller, L. P., Messenger, S., Flynn, G. J., et al. 2004, Geochim. Cosmochim. Acta, 68, 2577
    Knight, M. M. & Schleicher, D. G. 2009, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 41, AAS/Division for Planetary Sciences Meeting Abstracts #41, 23.04
    Korth, A., Marconi, M. L., Mendis, D. A., et al. 1989, Nature, 337, 53
    Kuan, Y., Huang, H., Snyder, L., et al. 2001, Frontiers of Life, eds., XIIémes Rencontres de Blois; France
    Kuan, Y.-J., Pen, M.-L., Huang, H.-C., Veal, J. M., & Woodney, L. M. 2004, in IAU Symposium, Vol. 213, Bioastronomy 2002: Life Among the Stars, ed. R. Norris & F. Stootman, 189
    Levison, H. F. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 107, Completing the Inventory of the Solar System, ed. T. Rettig & J. M. Hahn, 173–191
    Li, A. 2009, in Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength, ed. H. U. Käufl & C. Sterken, 161
    Lippi, M., Villanueva, G. L., DiSanti, M. A., et al. 2013, A&A, 551, A51
Lis, D. C., Mehringer, D. M., Benford, D., et al. 1997, Earth Moon and Planets, 78, 13 Lisse, C. M., Dennerl, K., Christian, D. J., et al. 2007, Icarus, 190, 391
    Lisse, C. M., VanCleve, J., Adams, A. C., et al. 2006, Science, 313, 635 Lucas, R. & Liszt, H. S. 2000, A&A, 358, 1069
Marconi, M. L., Korth, A., Mendis, D. A., et al. 1989, ApJ, 343, L77 Matthews, H. E. & Irvine, W. M. 1985, ApJ, 298, L61
    Meech, K. J., A’Hearn, M. F., Adams, J. A., et al. 2011, ApJ, 734, L1
    Milam, S. N., Remijan, A. J., Womack, M., et al. 2006, ApJ, 649, 1169
    Morbidelli, A. & Levison, H. F. 2003, Nature, 422, 30
    Morbidelli, A., Levison, H. F., Bottke, W. F., Dones, L., & Nesvorný, D. 2009, Icarus, 202, 310
    Morbidelli, A., Levison, H. F., & Gomes, R. 2008, The Dynamical Structure of the Kuiper Belt and Its Primordial Origin, ed. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 275–292
    Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. 2005, Nature, 435, 462
    Moreels, G., Clairemidi, J., Hermine, P., Brechignac, P., & Rousselot, P. 1994, A&A, 282, 643
    Morisawa, Y., Fushitani, M., Kato, Y., et al. 2006, ApJ, 642, 954
    Mumma, M. J., Bonev, B. P., Villanueva, G. L., et al. 2011, ApJ, 734, L7
    Mumma, M. J. & Charnley, S. B. 2011, ARA&A, 49, 471
    Mumma, M. J., DiSanti, M. A., Magee-Sauer, K., et al. 2005, Science, 310, 270
    Mumma, M. J., Weissman, P. R., & Stern, S. A. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine, 1177–1252
    Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. 2007, AJ, 133, 1962
    Oike, T., Kawaguchi, K., Takano, S., & Nakai, N. 2004, PASJ, 56, 431
    Ootsubo, T., Usui, F., Kawakita, H., et al. 2010, ApJ, 717, L66
Opitom, C., Jehin, E., Manfroid, J., et al. 2015, A&A, 574, A38
Paganini, L., DiSanti, M. A., Mumma, M. J., et al. 2014, AJ, 147, 15 Paganini, L., Mumma, M. J., Villanueva, G. L., et al. 2012, ApJ, 748, L13 Paganini, L., Villanueva, G. L., Lara, L. M., et al. 2010, ApJ, 715, 1258 Park, I. H., Wakelam, V., & Herbst, E. 2006, A&A, 449, 631
    Pajola, M., Höfner, S., Vincent, J. B., et al. 2017, Nature Astronomy, 1, 0092 Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885
Rodgers, S. D. & Charnley, S. B. 2001, MNRAS, 320, L61
    Rodgers, S. D., Charnley, S. B., Huebner, W. F., & Boice, D. C. 2004, Physical processes and chemical reactions in cometary comae, ed. M. C. Festou, H. U. Keller, & H. A. Weaver, 505–522
    Sandford, S. A., Aléon, J., Alexander, C. M. O. ., et al. 2006, Science, 314, 1720 Schleicher, D. G. 2009, AJ, 138, 1062
Skorov, Y. V. & Keller, H. U. 2007, in European Planetary Science Congress 2007, 859 Snyder, L. E., Veal, J. M., Woodney, L. M., et al. 2001, AJ, 121, 1147
    Soderblom, L. A., Becker, T. L., Bennett, G., et al. 2002, Science, 296, 1087
Sorrell, W. H. 2001, ApJ, 555, L129
Takakuwa, S., Kawaguchi, K., Mikami, H., & Saito, M. 2001, PASJ, 53, 251 Tenenbaum, E. D., Milam, S. N., Woolf, N. J., & Ziurys, L. M. 2009, ApJ, 704, L108 Tielens, A. G. G. M. 2008, ARA&A, 46, 289
    Turner, B. E. 1991, ApJS, 76, 617
    van Boekel, R., Min, M., Leinert, C., et al. 2004, Nature, 432, 479
    van Dishoeck, E. F. 2006, Proceedings of the National Academy of Science, 103, 12249
    van Dishoeck, E. F. & Blake, G. A. 1998, ARA&A, 36, 317
    Villanueva, G. L., Mumma, M. J., DiSanti, M. A., et al. 2011, Icarus, 216, 227
    Vincent, J.-B., Oklay, N., Pajola, M., et al. 2016, A&A, 587, A14
    Walsh, C., Loomis, R. A., Öberg, K. I., et al. 2016, ApJ, 823, L10
    Weaver, H. A. 2006, in Bulletin of the American Astronomical Society, Vol. 38, AAS/Division for Planetary Sciences Meeting Abstracts #38, 484
    Weidenschilling, S. J. 1977, MNRAS, 180, 57
    Weissman, P. R., Asphaug, E., & Lowry, S. C. 2004, Structure and density of cometary nuclei, ed. M. C. Festou, H. U. Keller, & H. A. Weaver, 337–357
    Willacy, K., Alexander, C., Ali-Dib, M., et al. 2015, Space Sci. Rev., 197, 151 Wilson, T. G., Rawlings, J. M. C., & Swinyard, B. M. 2017, MNRAS, 466, 1954 Woodney, L. M., A’Hearn, M. F., Schleicher, D. G., et al. 2002, Icarus, 157, 193 Woods, P. M., Schöier, F. L., Nyman, L.-Å., & Olofsson, H. 2003, A&A, 402, 617 Wright, M. C. H. 1971, ApJ, 166, 455
    Yamamoto, T. 1985, A&A, 142, 31
Ye, Q.-Z., Lin, H.-C., Lin, C.-S., & Shih, C.-Y. 2007, Minor Planet Circulars, 60238, 24 Young, J. 2007, Minor Planet Circulars, 61391, 29

    下載圖示
    QR CODE