透過您的圖書館登入
IP:18.221.140.111
  • 學位論文

利用2D材料提高可撓性電子元件的介電與散熱特性

Improvement of Dielectric and Thermal Properties of flexible electronics with 2D material

指導教授 : 張子璿
本文將於2025/08/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


隨著積體電路的設計走向三維度的整合,邏輯晶片的運算能力大幅度的提升,但是相對單位密度的元件功率消耗也會大幅度的提升,如何設計有效的散熱及封裝結構則變成現在追求高性能、高速電子元件的重要議題。因此,具有開發一個高散熱且低介電常數與低介電損耗複合材料的技術,並且同時能進行大規模的使用是很重要的。軟性材料應用於晶片封裝的應用,但這類材料唯一的缺點是熱傳導係數非常低,必須加入一些熱傳導係數特別高的陶瓷粉末,才能提升散熱效能,但此類複合材料的熱傳導係數也只能提高至 ~1W/mK,相對於金屬材料還要低兩個數量級,無法有效傳導電子元件運作的熱能。 在本篇論文裡,我們成功的研究了一套生產新的複合材料的技術,將具有超高效能平面熱傳導能力的二維氮化硼 (h-BN),有效的透過奈米纖維的方式,散佈在軟性材料中,形成緻密的散熱網路。我們做出來的複合材料將原先軟性材料的熱傳導從0.2 W/mK提高至28.181 W/mK,除此之外,介電常數維持在2.4與極低的介電損耗(<10-4)可以讓此複合材料用於各種高速元件的應用。我們開發的複合材料不只有非常優秀的散熱與介電特性,生產過程符合工業製程,能進行大量生產,同時對於水及濕氣有極高的抵禦力,非常適合作為封裝材料。透過進一步的分析材料的特性,我們引入了一個修正項修正Bruggeman model,成功的計算出二維材料的複合材料空間分布情形,瞭解製程成功的原因,作為未來混煉其他二維材料的根基。最後,我們將高功率元件AlGaN/GaN HEMTs薄膜從原先的基板上取下來,轉移到我們製作出來的複合材料薄膜上,來實證我們開發材料的散熱特性。在轉移後,透過應力的釋放,以及改善的散熱能力下,我們可以在軟性材料上面,提升元件的transconductance 高達18%。

並列摘要


Creating a polymeric composite with high thermal conductivity, low dielectric constant, and tangent loss are essential for packaging high-speed electronics. Soft-materials are able to be injected and molded around the transistors but also inherently poor at conducting heat. Even though many approaches that inserting the high conductive component into the polymers are proved to be able to increase the thermal properties, the blended composite is still maintaining the thermal conductivity around ~1W/mK, which is still far lowered than that of the general metal. In this research, we successfully create the new composite materials, not only with better thermal and dielectric properties, but also can be compatible for mass manufacturing. We successfully resolve the uniform distribution of 2D materials (boron nitride) into polymers by pre-mixing the BN and Cellulose nanofibril as a blended component. The orientation of BN inside the polymer are matched by Bruggeman model and demonstration of water-resistance and heaters are discussed. The process increases the thermal conductivity of polymer from 0.2W/mK to 28.181W/mK and has medium to low dielectric constant ~2.4 and ultra-low tangent loss (<10-4) and are suitable for high-speed applications. Finally, we release a GaN film from silicon substrate, and then transfer to composite thin film. The device is biased under the low bias shows that gm is actually increased by 18%.

參考文獻


[1] K. J. Lee et al., "Bendable GaN high electron mobility transistors on plastic substrates," Journal of Applied Physics, vol. 100, no. 12, p. 124507, 2006.
[2] J. A. Rogers, T. Someya, and Y. Huang, "Materials and mechanics for stretchable electronics," science, vol. 327, no. 5973, pp. 1603-1607, 2010.
[3] T. H. Kim et al., "Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management," Advanced Materials, vol. 20, no. 11, pp. 2171-2176, 2008.
[4] R. Landauer, "Electrical conductivity in inhomogeneous media," in AIP Conference Proceedings, 1978, vol. 40, no. 1: American Institute of Physics, pp. 2-45.
[5] H. Hong, J. U. Kim, and T.-i. Kim, "Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite," Polymers, vol. 9, no. 9, p. 413, 2017.

延伸閱讀