簡易檢索 / 詳目顯示

研究生: 黃昱翔
Huang, Yu-Hsiang
論文名稱: 1T-MoS2催化劑結合矽光電陰極應用於氮氣還原反應
1T-MoS2 Catalyst for Nitrogen Reduction to Ammonia via Si-Heterojunction Photocathode
指導教授: 陳家俊
Chen, Chia-Chun
陳俊維
Chen, Chun-Wei
口試委員: 陳俊維
Chen, Chun-Wei
郭聰榮
Kuo, Tsung-Rong
王迪彥
Wang, Di-Yan
陳家俊
Chen, Chia-Chun
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 57
中文關鍵詞: 產氨二維材料二硫化鉬光電化學
英文關鍵詞: Ammonia production, Two-dimensional materials (2D materials), Molybdenum disulfide (MoS2), Photoelectrochemical (PEC)
研究方法: 實驗設計法次級資料分析調查研究主題分析比較研究
DOI URL: http://doi.org/10.6345/NTNU202200821
論文種類: 學術論文
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 氮還原 1 1.2.1 哈伯法 1 1.2.2 電化學氮氣還原反應 2 1.3 氮還原觸媒 4 1.3.1 貴金屬 4 1.3.2 仿生觸媒 4 1.3.3 二維材料 5 1.4 光電化學 8 1.5 研究動機 9 第2章 文獻回顧與動機 10 2.1 電化學氮氣還原反應之過程 10 2.1.1 吸附機制 10 2.1.2 薩巴捷原則 11 2.2 電化學反應觸媒的抉擇 12 2.2.1 貴金屬 12 2.2.2 仿生觸媒 14 2.2.3 二維材料 ─ 二硫化鉬 15 2.3 光電化學反應 19 2.3.1 反應機制 19 2.3.2 反應元件的設計 21 第3章 實驗儀器設備 26 3.1 光電化學之實驗量測 26 3.1.1 太陽光模擬器 26 3.1.2 三極式光電化學反應系統 27 3.2 實驗材料與產物分析 30 3.2.1 掃描式電子顯微鏡 30 3.2.2 能量散射光譜儀 31 3.2.3 X射線繞射儀 32 3.2.4 拉曼光譜 33 3.2.5 紫外光/可見光吸收光譜儀 34 第4章 實驗藥品與步驟 36 4.1 實驗藥品 36 4.2 PEC基板的製作 37 4.3 1T-MoS2的合成 37 4.4 1T-MoS2電極的製作 38 4.5 產物NH3的檢測與分析 39 第5章 結果與討論 41 5.1 1T-MoS2的基本性質鑑定 41 5.2 PEC元件上1T-MoS2的形貌 43 5.3 1T-MoS2的電化學氮氣還原反應 45 5.4 1T-MoS2的光電化學氮氣還原反應 48 5.5 1T-MoS2的電化學與光電化學氮還原之比較 51 第6章 結論 53 參考文獻 54

    1. Rosca, V., et al., Nitrogen cycle electrocatalysis. Chemical Reviews, 2009. 109(6): p. 2209-2244.
    2. Foster, S.L., et al., Catalysts for nitrogen reduction to ammonia. Nature Catalysis, 2018. 1(7): p. 490-500.
    3. Modak, J.M., Haber process for ammonia synthesis. Resonance, 2002. 7(9): p. 69-77.
    4. Tang, C. and S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chemical Society Reviews, 2019. 48(12): p. 3166-3180.
    5. Hou, J., M. Yang, and J. Zhang, Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale, 2020. 12(13): p. 6900-6920.
    6. Soloveichik, G., et al., Renewable energy to fuels through utilization of energy dense liquids (REFUEL). US DOE, 2016.
    7. Wan, Y., J. Xu, and R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019. 27: p. 69-90.
    8. Lv, J., et al., Interface and defect engineer of titanium dioxide supported palladium or platinum for tuning the activity and selectivity of electrocatalytic nitrogen reduction reaction. Journal of colloid and interface science, 2019. 553: p. 126-135.
    9. Yang, T.-H., et al., Noble-metal nanoframes and their catalytic applications. Chemical Reviews, 2020. 121(2): p. 796-833.
    10. Wang, H.-B., et al., Bionic design of a Mo (IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020. 10(9): p. 4914-4921.
    11. Jayakumar, A., A. Surendranath, and P. Mohanan, 2D materials for next generation healthcare applications. International journal of pharmaceutics, 2018. 551(1-2): p. 309-321.
    12. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
    13. Martincová, J., M. Otyepka, and P. Lazar, Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS2 and 1T-TaS2. 2D Materials, 2020. 7(4): p. 045005.
    14. Van Tamelen, E.E. and D.A. Seeley, Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969. 91(18): p. 5194-5194.
    15. Yan, Z., et al., Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020. 10(11): p. 1902020.
    16. Banerjee, A., et al., Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. Journal of the American Chemical Society, 2015. 137(5): p. 2030-2034.
    17. Guo, C., et al., Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions. Energy & Environmental Science, 2018. 11(1): p. 45-56.
    18. Liu, D., et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020. 30(24): p. 2002731.
    19. Patil, S.B., et al., Enhanced N 2 affinity of 1T-MoS 2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance. Journal of Materials Chemistry A, 2021. 9(2): p. 1230-1239.
    20. Wang, K., D. Smith, and Y. Zheng, Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective. Carbon Resources Conversion, 2018. 1(1): p. 2-31.
    21. Wang, H.-P., et al., High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano letters, 2015. 15(5): p. 2817-2824.
    22. Cui, X., C. Tang, and Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018. 8(22): p. 1800369.
    23. Medford, A.J., et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42.
    24. Li, S.J., et al., Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Advanced materials, 2017. 29(33): p. 1700001.
    25. Wang, Z., et al., Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower‐like gold microstructures. ChemSusChem, 2018. 11(19): p. 3480-3485.
    26. Li, Z., et al., Fe-Pt nanoclusters modified Mott-Schottky photocatalysts for enhanced ammonia synthesis at ambient conditions. Applied Catalysis B: Environmental, 2020. 262: p. 118276.
    27. Chang, C.C., et al., Photoactive earth‐abundant iron pyrite catalysts for electrocatalytic nitrogen reduction reaction. Small, 2019. 15(49): p. 1904723.
    28. Pang, Y., et al., Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021.
    29. Lai, C.-H., M.-Y. Lu, and L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. Journal of Materials Chemistry, 2012. 22(1): p. 19-30.
    30. Zhao, L., et al., Efficient N 2 reduction with the VS 2 electrocatalyst: identifying the active sites and unraveling the reaction pathway. Journal of Materials Chemistry A, 2021. 9(44): p. 24985-24992.
    31. Zhang, J., et al., Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale, 2020. 12(20): p. 10964-10971.
    32. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
    33. Backes, C., et al., Functionalization of liquid‐exfoliated two‐dimensional 2H‐MoS2. Angewandte Chemie International Edition, 2015. 54(9): p. 2638-2642.
    34. Shi, J., et al., 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Advanced Materials, 2017. 29(30): p. 1701486.
    35. Yu, Y., et al., High phase-purity 1T′-MoS2-and 1T′-MoSe2-layered crystals. Nature chemistry, 2018. 10(6): p. 638-643.
    36. Zhang, J., et al., Cobalt-modulated molybdenum–dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. Journal of the American Chemical Society, 2019. 141(49): p. 19269-19275.
    37. Tang, Q. and D.-e. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chemistry of Materials, 2015. 27(10): p. 3743-3748.
    38. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    39. Minggu, L.J., W.R.W. Daud, and M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. International journal of hydrogen energy, 2010. 35(11): p. 5233-5244.
    40. Wang, B., et al., Highly efficient photoelectrochemical synthesis of ammonia using plasmon-enhanced black silicon under ambient conditions. ACS Applied Materials & Interfaces, 2020. 12(18): p. 20376-20382.
    41. Wang, S.-C., F.-Q. Tang, and L.-Z. Wang, Visible light responsive metal oxide photoanodes for photoelectrochemical water splitting: a comprehensive review on rational materials design. Journal of Inorganic Materials, 2018.
    42. Oh, I., J. Kye, and S. Hwang, Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano letters, 2012. 12(1): p. 298-302.
    43. Aziz, F. and A.F. Ismail, Spray coating methods for polymer solar cells fabrication: A review. Materials Science in Semiconductor Processing, 2015. 39: p. 416-425.
    44. Li, Z., et al., Carbon-free, high-capacity and long cycle life 1D–2D NiMoO4 nanowires/metallic 1T MoS2 composite lithium-ion battery anodes. ACS Applied Materials & Interfaces, 2019. 11(47): p. 44593-44600.
    45. Paganin, V., E. Ticianelli, and E. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996. 26(3): p. 297-304.
    46. Kim, K.-H., et al., The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method. International Journal of Hydrogen Energy, 2010. 35(5): p. 2119-2126.
    47. Su, J., et al., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano letters, 2011. 11(5): p. 1928-1933.
    48. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018.
    49. Newbury, D.E. and N.W. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). Journal of Analytical Atomic Spectrometry, 2013. 28(7): p. 973-988.
    50. Shindo, D. and T. Oikawa, Energy dispersive x-ray spectroscopy, in Analytical electron microscopy for materials science. 2002, Springer. p. 81-102.
    51. Stan, C.V., et al., X-ray diffraction under extreme conditions at the Advanced Light Source. Quantum Beam Science, 2018. 2(1): p. 4.
    52. Rostron, P., S. Gaber, and D. Gaber, Raman spectroscopy, review. laser, 2016. 21: p. 24.
    53. Penner, M.H., Ultraviolet, visible, and fluorescence spectroscopy, in Food analysis. 2017, Springer. p. 89-106.
    54. Zhu, Y., et al., Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 2019. 119: p. 115627.
    55. Xiang, T., et al., Vertical 1T-MoS 2 nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. Nanoscale, 2017. 9(21): p. 6975-6983.
    56. Sandoval, S.J., et al., Raman study and lattice dynamics of single molecular layers of MoS 2. Physical Review B, 1991. 44(8): p. 3955.
    57. Rong, J., et al., Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Applied Surface Science, 2022. 579: p. 152216.
    58. Huang, Y., et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature communications, 2019. 10(1): p. 1-11.

    無法下載圖示 本全文未授權公開
    QR CODE