簡易檢索 / 詳目顯示

研究生: 鄭玳育
Cheng, Tai-Yu
論文名稱: 利用脂肪酶催化合成或自中草藥分離新穎性唾液酸衍生物及其對脂多醣的結合力分析
Novel sialic acid derivatives synthesized by lipase-catalyzed reactions or isolated from Chinese herbal medicine and their binding affinity for lipopolysaccharide
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 唾液酸脂肪酶兩相轉酯化反應唾液酸衍生物脂多醣
英文關鍵詞: Sialic acid, Lipase, Two-phase transesterification, Sialic acid derivatives, Lipopolysaccharide
DOI URL: https://doi.org/10.6345/NTNU202202810
論文種類: 學術論文
相關次數: 點閱:40下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 唾液酸(Sialic acid, SA)又稱為N-乙醯神經胺酸(N-acetylneuraminic acid, Neu5Ac)屬於具有高度可變化學結構的醣類家族。在真核生物中,含SA的結構分子參與許多重要的生理和病理過程,如細胞間的黏附、病毒或細菌與目標細胞的結合等。因此,SA及其衍生物在保健食品和製藥工業中具有廣泛的應用。而革蘭氏陰性菌是常見的敗血症病原體,位在細菌外壁上的脂多醣 (Lipopolysaccharide, LPS),其結構包含了具有親水性的多醣組成,以及疏水性的脂質組成,即脂質A (lipid A),脂質A毒性會引起強烈的免疫反應。 SA已被證明能夠中和LPS毒性,但SA為親水性不具疏水性結構,為了提高SA對LPS的親和力,本研究中利用脂肪酶進行SA酯化或轉酯化反應,以產生新的唾液酸酯類衍生物,提升唾液酸的疏水性。使用SA及油酸做為反應物進行兩相酯化反應,加入重組脂肪酶Candida rugosa lipase 1~4 (CRL1~4)進行催化反應,結果並未發現產物形成,SA也沒有減少。使用不同鏈長脂肪酸酯和SA於有機溶劑中進行單相轉酯化反應,使用冷凍乾燥的重組CRL1~4、市售CRL或Novozymes Eversa Transform (即Thermomyces lanuginosus lipase, TLL)催化反應亦未有產物產生。當SA與vinyl acetate進行兩相轉酯化反應時,使用固定化Novozymes 435可達到90.5 %的最高轉化率,其次為重組脂肪酶CRL1、CRL4、及Novozymes TLL依序為53.7 %、34.5 %和28.2 %。當SA與vinyl propionate反應時,使用固定化Novozymes 435可達到92.5 %的最高轉化率,其次為CRL1及CRL4,轉化率依序為75.3 %及63.0 %。當SA與vinyl laurate反應時,固定化Novozymes 435、CRL1和CRL4的轉化率分別為67.2 %、49.6 %、35.8 %。使用vinyl palmitate作為基質,Novozymes435、CRL1及CRL4催化之轉化率分別為51.9 %、68.4 %及17.0 %。由此可知,不同酵素對相同受質有不同的催化活性,而且同一種酵素對不同鏈長度脂肪酸酯受質,也有不同的催化活性,同時,相較於混合了多個isoforms的CRL商業化酵素,個別重組CRL isoforms的催化效率較佳。以前的研究表明中草藥LS含有唾液酸衍生物,透過加熱萃取和鹽酸水解,並使用HPLC進行分析和收集,得到一種可能為唾液酸衍生物LS-2。使用表面電漿共振技術 (Surface Plasmon Resonance, SPR),我們比較了唾液酸和新型唾液酸衍生物LS-2對LPS的親和性。由於利用商業化SPR晶片所製作的SA固定化晶片,對LPS的靈敏度極低,故自行製作出一種對LPS有高靈敏度的Cys-SA 晶片,測得SA 與LPS的結合常數為KA =6.82 x 1010 M-1,顯示此晶片適合用來偵測LPS,而使用自行製作的Cys-LS-2 晶片測得LS-2對LPS的親和性比唾液酸高,結合常數為KA=1.10 x 1013 M-1,本研究結果可以應用於工業化生產唾液酸衍生物,擴展唾液酸衍生物的應用潛力。

    Sialic acids (SA) (N-acetylneuraminic acids, Neu5Ac) represent a family of sugar molecules with highly variable chemical structure. SA-containing structures in eukaryotic systems play important roles in various physiological and pathological processes. These special features enable them to fulfill several important biological functions such as cell-cell adhesion and target-cell binding of viruses or bacteria. Therefore, SA and its derivatives have broad applications in health food and the pharmaceutical industry. Lipid A is a lipid component of an endotoxin and its toxic effects can induce a strong immune response. SA has been proved to be able to neutralize LPS toxins, but there are no hydrophobic structures in hydrophilic SA. To improve the SA’s binding affinity for LPS, the lipophilicity of SA could be increased by esterification or transesterification. In this study, the lipase-catalyzed esterification or transesterification of SA was performed to produce novel SA ester derivatives.Recombinant Candida rugosa lipase 1~4 (CRL1-4) were used to catalyze the esterification of SA and oleic acid in two-phase system. However, the substrate SA did not decrease and no product formed. Transesterification in organic solvent (one-phase system) was performed using various esters with different chain-length fatty acids and SA as substrates, and catalyzed by lyophilized recombinant CRL1-4, commercial CRL or Novozymes Eversa Transform (Thermomyces lanuginosus lipase, TLL).Still no products were formed. When transesterification in two-phase system was performed using vinyl acetate and SA as substrates, Novozymes 435, recombinant CRL1 and CRL4 achieved conversion rates of 90.5%, 53.7% and 34.0%, respectively.When similar transesterification reactions were performed using vinyl propionate, Novozymes 435, recombinant CRL1 and CRL4 achieved conversion rates of 92.5%, 75.3% and 63%, respectively. Usingvinyl laurate as substrate,the conversion rates were 67.2% for Novozymes 435, 49.6% for CRL1 and 35.8% for CRL4. Using vinyl palmitate as substrate, the conversion rates were 51.9% for Novozymes 435, 68.4% for CRL1 and 17.0% for CRL4. The results showed that different enzymes have different catalytic activities toward the same substrate, and a specific enzyme also has different catalytic activities toward different fatty acid ester substrates. In addition, individual CRL isoform showed higher catalytic activity than commercial CRL that contains mixture of different lipase isoforms. Previous studies have indicated that Chinese herbal medicine LS contains SA derivatives. In this study, a possible SA derivative LS-2 was obtained by hot-water extraction, hydrochloric-acid hydrolysis and then was analyzed and collected by HPLC. Using surface plasmon resonance (SPR), we compared the LPS-binding affinity of SA and the novel SA derivatives. Because the SA-immobilized SPR chip which is made from commercially available chip showed very low affinity for LPS, therefore, we used our in-house Cys-SA and Cys-LS-2 chips to assay the LPS-binding affinity. It was found that the Cys-SA chip had a binding constant (KA) of 6.82 x 1010 M-1, and showed high sensitivity for detecting LPS. The Cys-LS-2 chip had a binding constant (KA) of 1.10 x 1013 M-1,and showed that LS-2 had higher affinity for LPS than SA. This study could be potentially applied in industry for the production of SA derivatives and expand the applications of SA derivatives.

    目錄 中文摘要 I Abstract IV 目錄 VII 表目錄 XII 圖目錄 XIV 附錄 XVII 壹、 緒論 1 一、 唾液酸 1 1. 唾液酸的介紹 1 2. 唾液酸的來源 2 3. 唾液酸的功能與應用 2 二、 脂多醣 4 1. 脂多醣的介紹 4 2. LPS引發之生理與病理反應 4 3. LPS感染治療方式 6 4. LPS檢測及去除 7 三、 酯化反應 8 四、 轉酯化反應 8 五、 脂肪酶 9 1. 脂肪酶的介紹 9 2. 脂肪酶催化反應 10 3. 界面活化作用(Interfacial activation) 10 4. 脂肪酶之工業應用 11 5. Candida rugosa lipase (CRL) 11 6. Candida rugosa lipase 同功酶 11 六、 表面電漿共振技術 12 貳、 研究目的 14 一、 研究動機與研究問題 14 參、 研究材料與方法 16 一、 微生物菌株 16 二、 菌株培養及酵素培養 16 三、 酵素液濃縮透析 16 四、 酵素表達量之定量分析 17 1. 菌量測定 17 2. 酵素活性分析 17 3. 酵素蛋白質定量 18 五、 聚丙烯醯胺膠體電泳 19 六、 酵素法合成唾液酸酯 19 1. 兩相酯化反應 19 2. 單一相轉酯化反應 20 3. 兩相轉酯化反應 20 4. HPLC定性分析 22 七、 中草藥唾液酸衍生物萃取 22 1. 中草藥多糖萃取與多糖酸解 22 2. 中藥酸解液的定性分析 23 3. 唾液酸衍生物之收集 23 八、 內毒素吸附力分析 24 1. 生物晶片製備 24 2. 表面電漿共振分析 25 九、 離體自由基測定 26 肆、 研究結果 28 一、 酵素法唾液酸酯合成 28 1. 兩相酯化反應 28 2. 單一相轉酯化反應 28 3. 兩相轉酯化反應 28 二、 中草藥唾液酸衍生物萃取 32 1. 唾液酸衍生物製備 32 2. 中藥萃取液的定性分析 33 3. 唾液酸衍生物之收集 33 三、 內毒素吸附力分析 33 1. 表面電漿共振分析 34 四、 離體自由基測定 35 伍、 討論 37 一、 Candida rugosa lipase 同功酶催化 37 二、 酵素法唾液酸酯合成 37 三、 內毒素吸附力分析 38 四、 中藥萃取物LS-2應用 39 陸、 參考文獻 40   表目錄 表一、單一相轉酯化反應條件 46 表二、兩相轉酯化反應條件 47 表三、脂肪酶催化唾液酸及Oleic acid兩相酯化反應 48 表四、脂肪酶催化唾液酸及Ethyl butyrate單一相酯化反應 49 表五、脂肪酶催化唾液酸及Methyl octanoate單一相酯化反應 50 表六、脂肪酶催化唾液酸及Vinyl acetate兩相轉酯化反應 51 表七、脂肪酶催化唾液酸及Vinyl propionate兩相轉酯化反應 52 表八、脂肪酶催化唾液酸及Ethyl butyrate兩相轉酯化反應 53 表九、脂肪酶催化唾液酸及Methyl octanoate兩相轉酯化反應 54 表十、脂肪酶催化唾液酸及Ethyl laurate兩相轉酯化反應 55 表十一、脂肪酶催化唾液酸及Vinyl laurate兩相轉酯化反應 56 表十二、脂肪酶催化唾液酸及Methyl palmitate兩相轉酯化反應 57 表十三、脂肪酶催化唾液酸及Vinyl palmitate兩相轉酯化反應 58 表十四、脂肪酶催化唾液酸及Soybean oil兩相轉酯化反應 59 表十五、脂肪酶催化唾液酸及Olive oil兩相轉酯化反應 60 表十六、不同脂肪酶催化唾液酸和Vinyl acetate進行兩相轉酯化結果 之酵素比活性及反應6小時轉化率結果比較 61 表十七、不同脂肪酶催化唾液酸和Vinyl propionate進行兩相轉酯化 結果之酵素比活性及反應6小時轉化率結果比較 62 表十八、不同脂肪酶催化唾液酸和Vinyl laurate進行兩相轉酯化 結果之酵素比活性及反應6小時轉化率結果比較 63 表十九、不同脂肪酶催化唾液酸和Vinyl palmitate進行兩相轉酯化 結果之酵素比活性及反應6小時轉化率結果比較 64  圖目錄 圖一、CRL1~CRL4進行SDS-PAGE電泳分析 65 圖二、唾液酸及Oleic acid兩相酯化反應結果 66 圖三、唾液酸及Vinyl acetate單一相轉酯化反應結果 67 圖四、唾液酸及Ethyl butyrate單一相轉酯化反應結果 68 圖五、唾液酸及Methyl octanate單一相轉酯化反應結果 69 圖六、唾液酸及Vinyl acetate兩相轉酯化反應結果 70 圖七、唾液酸及Vinyl propionate兩相轉酯化反應結果 71 圖八、唾液酸及Ethyl butyrate兩相轉酯化反應結果 72 圖九、唾液酸及Methyl octanate兩相轉酯化反應結果 73 圖十、唾液酸及Ethyl laurate兩相轉酯化反應結果 74 圖十一、唾液酸及Vinyl laurate兩相轉酯化反應結果 75 圖十二、唾液酸及Methyl palmitate兩相轉酯化反應結果 76 圖十三、唾液酸及Vinyl palmitate兩相轉酯化反應結果 77 圖十四、唾液酸及Soybean oil兩相轉酯化反應結果 78 圖十五、唾液酸及Olive oil兩相轉酯化反應結果 79 圖十六、Vinyl acetate轉酯化時程反應 80 圖十七、Vinyl acetate轉酯化時程反應與轉化率 81 圖十八、Vinyl propionate轉酯化時程反應 82 圖十九、Vinyl propionate轉酯化時程反應與轉化率 83 圖二十、Vinyl laurate轉酯化時程反應 84 圖二十一、Vinyl laurate轉酯化時程反應與轉化率 85 圖二十二、Vinyl palmitate轉酯化時程反應 86 圖二十三、Vinyl palmitate轉酯化時程反應與轉化率 87 圖二十四、不同比例0.1N HCl和LS萃取液酸解結果比較 88 圖二十五、0.1N HCl:LS萃取液 = 2:1於80℃加熱時間比較 89 圖二十六、使用製備級HPLC系統分析並收集LS萃取液 90 圖二十七、使用分析級HPLC系統分析收集到的衍生物 91 圖二十八、使用製備級HPLC系統確認收集到的單一物質 92 圖二十九、使用Cys –SA film不同製作方式進行LPS吸附力分析 93 圖三十、使用Cys –Dextran film 進行LPS吸附力分析 94 圖三十一、使用Cys – SA film進行LPS吸附力分析 95 圖三十二、使用Cys – LS-2 film進行LPS吸附力分析 96 圖三十三、Cys-SA film及Cys-LS-2 film對LPS的親和性比較 97 圖三十四、唾液酸及LS-2抗氧化能力測試 98   附錄 附錄一、唾液酸 (Neu5Ac) 結構式 99 附錄二、AAMI內毒素濃度之規定(American National Standard) 100 附錄三a、傳統化學酯化反應 101 附錄三b、轉酯化合成生質柴油 101 附錄四、脂肪酶催化反應 102 附錄五、五種不同CRL同功酶基本性質 103 附錄六、表面電漿共振技術原理 104 附錄七a、CM5 Biosenor組成 105 附錄七b、Cys - SA Biosenor組成 105

    Akoh CC, Lee GC, Shaw JF. Protein engineering and applications of Candida rugosa lipase isoforms. Lipids. 2004 Jun;39(6):513-26.
    Benjamin, S, Pandey, A. 1998. Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast, 14, 1069-1087
    Chau CM, Liu KJ, Lin CH. 2011 Nov, Enzymatic synthesis of sialic acid derivative by immobilized lipase from Candida antarctica. Bioresour Technol.; 102 (21):10136-8
    Chang SW, Shieh CJ, Lee GC, Shaw JF, 2005 Apr, Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Appl Microbiol Biotechnol.; 67(2):215-24.
    Chang SW, Li CF, Lee GC, Yeh T, Shaw JF. 2011 Jun, Engineering the expression and biochemical characteristics of recombinant Candida rugosa LIP2 lipase by removing the additional N-terminal peptide and regional codon optimization. J Agric Food Chem.; 59(12):6710-9.
    Chih-Ching Yang, Chien-An Yao, Jyh-Chin Yang, Chiang-Ting Chien. Sialic Acid Rescues Repurified Lipopolysaccharide-Induced Acute Renal Failure via Inhibiting TLR4/PKC/gp91-Mediated Endoplasmic Reticulum Stress, Apoptosis, Autophagy, and Pyroptosis Signaling. Toxicol Sci (2014) 141 (1): 155-165.
    Clark M Blatteis , Elimer Sehic. 1998, Cytokines and Fevera. Annals of the New York Academy of Sciences ,pages 608–618.
    David C. Morrison, John L. Ryan,1979 ,Bacterial Endotoxins and Host Immune Responses. Advences In Immunology, Vol.28
    Gerhard Lonnemann, Tim C. Behme, BenedictLe-nzner. 1992, Permeability of dialyzer membranes to TNFa-inducing substances derived from water bacteria. Kidney INT 42:61-68.
    Heyman SN, Goldfarb M, Darmon D, Brezis M, Tissue oxygenation modifies nitric oxide bioavailability. Microcirculation. 1999 Sep; 6(3):199-203.
    Hope T. Beier & Christopher B. Cowan & I-Hsien Chou & James Pallikal & James E. Henry & Melodie E. Benford & oseph B. Jackson & Theresa A. Good & Gerard L. Coté, 2007. Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells. Plasmonics (2007) 2:55–64
    Jennifer E. Stencel-Baerenwald, Kerstin Reiss, Dirk M. Reiter, Thilo Stehle & Terence S. Dermody. The sweet spot: defining virus–sialic acid interactions. Nature Reviews Microbiology 12, 739–749 (2014)
    Joseph N. Varghese, Jennifer L. McKimm-Breschkin, James B. Caldwell, Alexander A. Kortt, Peter M. Colman. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins: Structure, Function, and Bioinformatics November 1992 Pages 327–332
    Kelm S, Schauer R,1997, Sialic acids in molecular and cellular interactions. Int Rev Cytol.; 175:137-240.
    Ken-ichiro Yamamoto, Masto Matsuta, Masayo Mayama. 2006, Evaluation of the activity of endotoxin trappedby a hollow-fiber dialysis membrane. Journal of Membrane Science 272: 211–216
    Kultida Kaewprapan, Jirarut Wongkongkatep, Watanalai Panbangred, Pranee Phinyocheep, Emmanuelle Marie, Alain Durand, and Pranee Inprakhon. Lipase-catalyzed synthesis of hydrophobically modified dextrans: Activity and regioselectivity of lipase from Candida rugosa. Journal of Bioscience and Bioengineering VOL. 112 No. 2, 124–129, 2011
    Lee GC, Lee LC, Sava V, Shaw JF. 2002 Sep 1, Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. ; Biochem J. 366,603-11.
    Macrae A.R. Lipase-Catalyzed Interesterification of Oils and Fats. Journal of the American Oil Chemists’ Society, p 291–294 (1983)
    Mamoru Koketsu, Teruhiko Nitoda, Hidetoshi Sugino, Lekh R. Juneja, Mujo Kim, Takehiko Yamamoto, Naoji Abe, Tetsuya Kajimoto, and Chi-Huey Wong. Synthesis of a Novel Sialic Acid Derivative (Sialylphospholipid) as an Antirotaviral Agent. J. Med. Chem. 1997, 40, 3332-3335
    Manuel Ferrera, Juan Soliverib, Francisco J. Ploua, Nieves L´opez-Cort´esa, Dolores Reyes-Duartea, Morten Christensenc, Jos´e L. Copa-Pati˜no, Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Antonio Ballesterosa Enzyme and Microbial Technology 36 (2005) 391–398
    Masaru Kitagawa, Han Fan, Takao Raku, Shigeo Shibatani, Yoshihiko Maekawa, Yoichi Hiraguri, Ryuichiro Kurane & Yutaka Tokiwa. Selective enzymatic preparation of vinyl sugar esters using DMSO as a denaturing co-solvent. Biotechnology Letters 21:355–359, 1999.
    Michael Thompson, Christophe Blaszykowski, Sonia Sheikh, Alexander Romaschin A true theranostic approach to medicine: Toward standem sensor detection and removal of endotoxin in blood. Biosensors and Bioelectronics 67 (2015) 3–10
    Morrison DC, Ryan JL. 1979, Bacterial endotoxins and host immune responses.Adv Immunol.;28:293-450.
    Nakano T, Sugawara M, Kawakami H. 2001 Jan-Feb, Sialic acid in human milk: composition and functions. Acta Paediatr Taiwan.; 42(1):11-7.
    Okumura Susumu., Iwai Mieko., Tsujisaka Yoshio. Synthesis of various kinds of esters by four microbial lipases Biochimica et Biophysica Acta (BBA) -Lipids and Lipid Metabolism, P156-165 (1979)
    P. Grochulski, Y. Li, J. D. Schrag, and M. Cygler . 1994 Jan; Two conformational states of Candida rugosa lipase. Protein Sci.;3(1): 82–91.
    Pablo Domı´nguez de Marı´a, Jose M. Sa´nchez-Montero, Jose´ V. Sinisterra, Andre´s R. Alca´ntara, Understanding Candida rugosa lipases: An overview. Biotechnology Advances 24 (2006) 180– 196
    Pegah N. Abadiana, Nimet Yildirim, April Z. Gu, Edgar D. Goluch. SPRi-based adenovirus detection using a surrogate antibody method. Biosensors and Bioelectronics 74 (2015) 808–814
    Pinto, A.C, Guarieiro, L.L.N, Rezende, MJ, Ribeiro, N.M., Torres,E.A, Lopes, W.A, Pereira P.A, Andrade, J.B. 2005. Biodiesel: an overview.J. Braz. Chem. Soc., 16, 1313-1330.
    Raetz CR, Whitfield C, 2002, Lipopolysaccharide endotoxins. Annu Rev Biochem.; 71:635-700.
    Robert Verger. Interfacial activation’ of lipases: facts and artifacts. Trends in Biotechnology, Pages 32-38 (1997)
    Sailas Benjamin and Ashok Pandey. Candida rugosa Lipases: Molecular Biology and Versatility in Biotechnology. Yeast 14, 1069–1087 (1998)
    Schauer R, Chemistry, metabolism, and biological functions of sialic acids.Adv Carbohydr Chem Biochem. 1982;40:131-234
    Shye-Jye Tang, Jei-Fu Shaw, Kuang-Hui Sun, Guang-Huan Sun, Terng-Yuan Chang, Ching-Kai Lin, Yuh-Chih Lo, and Guang-Chiun Lee. Recombinant Expression and Characterization of the Candida rugosa lip4 Lipase in Pichia pastoris: Comparison of Glycosylation, Activity, and Stability. Archives of Biochemistry and Biophysics Vol. 387, No. 1, March 1, pp. 93-98, 2001
    Shu-Wei Chang, Guan-Chiun Lee, and Jei-Fu Shaw. Efficient Production of Active Recombinant Candida rugosa LIP3 Lipase in Pichia pastoris and Biochemical Characterization of the Purified Enzyme. J. Agric. Food Chem. 2006, 54, 5831-5838
    Shu-Wei Chang, Myron Huang, Yu-Hsun Hsieh, Ying-Ting Luo, Tsung-Ta Wuf, Chia-Wen Tsai, Chin-Shuh Chen, Jei-Fu Shaw. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase’s isozymes. Food Chemistry 155 (2014) 140–145
    Stefan LofAs and Bo Johnsson, 1990. A Novel Hydrogel Matrix on Gold Surfaces in Surface Plasmon Resonance Sensors for Fast and Efficient Covalent Immobilization of Ligands. Pharmacia Biosensor AB, S-75182 Uppsala, Sweden
    Varki ,Selectins and other mammalian sialic acid-binding lectins.Curr Opin Cell Biol. 1992 Apr;4(2):257-66.
    Vincent Chabot a, Charles M. Cuerrierb, Emanuel Escherb, Michel Grandboisb, Paul G. Charettea, Vincent Aimeza, Biosensing based on surface plasmon resonance and living cells. Biosensors and Bioelectronics 24 (2009) 1667–1673
    Wang B. 2009, Sialic acid is an essential nutrient for brain development and cognition. ;Annu Rev Nutr.;29:177-222
    Yang CC, Yao CA, Yang JC, Chien CT, 2014 Sep, Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling. Toxicol Sci.141(1):155-65.
    Yang JC, Yang HC, Shun CT, Wang TH, Chien CT, Kao JY, 2013, Catechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection. Evid Based Complement Alternat Med.;2013:248585.
    河南醫學研究第 12 卷,第 2 期2003年6 月,盧大用,實驗腫瘤轉移模型及化療研究 Experiment tumor metastatic models and chemotherapy stu

    下載圖示
    QR CODE