簡易檢索 / 詳目顯示

研究生: 張耕華
Chang, Geng-Hua
論文名稱: 利用有機雙關能不對稱催化劑進行Vinylogous Michael Addition/Henry Reaction Cascade 合成四氫芴酮衍生物
Organocatalytic Enanotioselective Synthesis of Tetrahydrofluoren-9-9ones via Vinylogous Michael Addition/Henry Reaction Cascade of 1,3-Indandion-Derived Pronucleophiles
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 463
中文關鍵詞: 有機不對稱催化
英文關鍵詞: Vinylogous
DOI URL: https://doi.org/10.6345/NTNU202204358
論文種類: 學術論文
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為開發新穎1,3-茚二酮衍生物為親核性前驅物與不同親電
    子試劑的反應在有機雙功能金雞納鹼衍生物催化下,藉由Vinylogous
    Michael/Henery Reaction Cascade 建構四氫芴酮衍生物。

    第一部分,利用1,3-茚二酮衍生物和(E)-(2-硝基乙烯基)苯的有機不對稱催化反應,可建構具四個立體中心包含一個四級碳的多取代四氫芴酮衍生物;反應結果得單一非鏡像異構物,產率為43-98%,鏡像超越值可高達98%;同時,探討此類親性試劑運用在多取代親電子性試劑,像是(Z)-叔丁基3-(2-乙氧基-2-氧代亞乙基)-2- oxoindoline-1-羧酸上的應用,可套用上述的研究概念生成四氫螺[芴-4,3'-二氫吲哚]-1',3-二羧酸衍生物,有高達98% 的產率及83% 的鏡像超越值。

    第二部分,使用具有多取代羰基香豆素衍生物及不同取代之亞胺衍生
    物,經由[3+2] 反應,合成出具有多個掌性中心的苯並吡喃並[3,4-c]吡咯烷衍生物,不僅有良好的產率、非鏡像異構比及高達 99% 的鏡像超越值,同時,預期外的分子內官能團轉移,也為我們詳細探討之。

    Bifunctional organocatalyst dominated for asymmetric catalysis via utilizing novel
    1,3-indandionederived pronucleophiles with wide variety of nitoalkenes for
    Vinylogous Michael addition/Henry cyclization cascade to generate tetrahydrofluoren-
    9-ones derivatives with excellent result.

    Part I: An unprecedented organocatalytic enantioselective vinylogous Michael
    addition/Henry cyclization cascade is presented for the synthesis of highly substituted
    tetrahydrofluoren-9-ones employing novel 1,3-indandionederived pronucleophiles
    94 and nitroalkenes. Following a very simple protocol, a wide range of products
    were obtained in good to excellent yields and with excellent enantioinduction
    (43−98% yield, up to 98% ee). The reaction proceeded with excellent diastereocontrol
    despite the simultaneous generation of four stereogenic centers. Surprisingly, when 2-
    (1- phenylethylidene)-1H-indandione 94h-i was used as a pronucleophile, no
    cyclization was observed, and only Michael addition adducts 98 were furnished in
    very good yields and excellent enantioselectivities.

    Part II: An enantioselective synthesis of benzopyrano[3,4-c]pyrrolidine derivatives via
    organocatalyzed [3+2] cycloaddition has been achieved. Cinchona alkaloid-derived
    organocatalysts as Bronsted bases have been examined for this asymmetric
    cycloaddition of o-hydroxy aromatic aldimines with 3-substituted coumarins.
    An unexpected rearrangement of the quaternary acyl moiety in the products resulted
    in an in situ protection of the o-hydroxy group.

    簡歷…………………………………………………………………………………....I 摘要…………………………………………………………………………………...II Abstract……………………………………………………………………………...III 謝誌…………………………………………………………………………………..IV 第一章 利用有機雙關能不對稱催化進行Vinylogous Michael addition/Henry cyclization cascade 合成四氫芴酮衍生物 1-1. 前言 1-1-1. 碳-碳鍵應用在遠端位置的生成……………………………………...1-5 1-1-2. 雙關能衍生物催化劑 (Bifunctional catalyst) 的發展與探討………5-7 1-1-3. 不對稱催化 Vinylogous Michael 加成的探討……………………..7-17 1-1-4. 有機不對稱催化 Vinylogous Michael Cascade 反應的探討……..17-20 1-2. 研究動機………………………………………………………………….21-23 1-3. 實驗結果與討論 1-3-1. 設計及探討1,3-茚二酮骨架之親核性試劑合成…………………..24-26 1-3-2. 探討 Vinylogous Michael Addition/Henry cyclization 連續性反應之催化劑、溶劑和溫度之最佳化條件篩選……………………………...27-31 1-3-3. 探討化合物 95 之 R3 為不同取代基其 Vinylogous Michael Addition/Henry cyclization 連續反應之影響……………………...32-34 1-3-4. 探討化合物 94 在不同 R1、R2 取代基,及化合物 95 之 R3 為不同取代基其 Vinylogous Michael Addition/Henry cyclization 連續反應之影響………………………………………………………………….35-36 1-3-5. 探討 Vinylogous Michael Addition 當化合物 94 之 R2 = H下,改變化合物94 之 R1 和 化合物 95 之 R3 取代基的影響………...37-39 1-3-6. 探討 Vinylogous Michael 在其他類型連鎖反應上的延伸應用….…40 1-3-7. Vinylogous Michael Addition/Henry cyclization 連鎖反應機構探討..41 1-4. 結論…………………………………………………………………………..42 1-5. 未來展望……………………………………………………………….…42-43 1-6. 實驗部分 1-6.1. 分析儀器及基本實驗操作……………………………………….....44-45 1-6.2. 反應步驟…………………………………………………………….46-47 1-6.3. 起始物 94 製備方法學實驗數據....……………………………….48-52 1-6.4. 實驗方法及產物實驗數據………………………………………….53-83 1-7. 參考文獻…………………………………………………………………84-86 第二章 有機不對稱催化合成多取代的苯并吡喃[3,4-c]吡咯啶衍生物 2-1. 前言 2-1-1. 苯並吡喃環化合物結構介紹………………………………........87-88 2-2. 合成策略 2-2-1. 設計 α-amino malonate imines 的目的………………………....88-89 2-2-2. 有機不對稱合成苯並吡喃環衍生物方法以及文獻報導……….89-94 2-3. 研究動機………………………………………………………………….95-96 2-4. 實驗結果與討論 2-4-1. 最佳化催化劑篩選……………………………………………….97-99 2-4-2. 最佳化溶劑篩選……………………………………………….100-101 2-4-3. 最佳化溫度篩選……………………………………………….102-104 2-4-4. 探討不同香豆素取代基效應對產物結果的影響…………….105-110 2-4-5. 探討香豆素衍生物上的活化基效應探討…………………….111-112 2-4-6. 衍生化反應………………………………………………….....113-115 2-4-7. 反應機構和模組探討……………………………………………....116 2-5. 結論………………………………………………………………………....117 2-6. 實驗部分 2-6-1. 分析儀器及基本實驗操作……………………………………118-119 2-6-2. 反應步驟…………………………………………………..…..120-121 2-6-3. 起始物實驗數據………………………………………………122-125 2-6-4. 產物實驗數據………………………………………………....126-149 2-7. 參考文獻……………………………………………………………....150-151 附錄一 1H NMR, 13C NMR spectrum I. 1H NMR, 13C NMR spectrum data of compound 94…………..….153-170 II. 1H NMR, 13C NMR spectrum data of compound 97………..…….171-216 III. 1H NMR, 13C NMR spectrum data of compound 98………..….…217-246 IV. 1H NMR, 13C NMR spectrum data of compound 106………..…...247-252 V. 1H NMR, 13C NMR spectrum data of compound 152……..……...253-266 VI. 1H NMR, 13C NMR spectrum data of compound 154………..…...267-306 VII. 1H NMR, 13C NMR spectrum data of compound 156………….....307-310 VIII. 1H NMR, 13C NMR spectrum data of compound 158………….....311-312 IX. 1H NMR, 13C NMR spectrum data of compound 160.....................313-314 附錄二 HPLC Diagram I. HPLC diagram of compound 97….……………………………….316-337 II. HPLC diagram of compound 98……………………………..……338-352 III. HPLC diagram of compound 106……………………………..…..353-354 IV. HPLC diagram of compound 154………………………………....355-374 V. HPLC diagram of compound 156………………………..………..375-376 VI. HPLC diagram of compound 158, 160……………………..……..377-378 附錄三 X-ray 單晶繞射結構解析與數據 I. 化合物 97ac X-ray 單晶繞射數據 (絕對立體組態)…..……….380-395 II. 化合物 98hb X-ray 單晶繞射數據 (絕對立體組態)………......396-411 III. 化合物 106fa X-ray 單晶繞射數據 (相對立體組態)……….....412-423 IV. 化合物 154aba X-ray 單晶結構數據 (絕對立體組態)…..……424-441 V. 化合物 158aaa X-ray 單晶結構數據 (相對立體組態)...……....442-452 VI. 化合物 160aaa X-ray 單晶結構數據 (相對立體組態)...………453-463 著作發表

    參考資料
    1.
    (1) (a) Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235. (b) Erkkillä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416. (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
    (2) (a) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. (b). Alexakis, A.; Ba¨ckvall, J. E.; Krause, N.; Pa`mies, O.; Die´guez, M. Chem. Rev. 2008, 108, 2796. (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067
    (3) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929.
    (4) Cordell, G. A. Introduction to Alkaloids; Wiley: New York, 1981, 826.
    (5) Denmark, S. E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem. Int. Ed. 2005, 44, 4682.
    (6) (a) Kiyooka, S.-I.; Hena, M. A.; Yabukami, T.; Murai, K.; Goto, F. Tetrahedron Lett. 2000, 41, 7511. (b) Kiyooka, S.-I.; Hena, M. A. J. Org. Chem. 1999, 64, 5511.
    (7) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076.
    (8) MacMillan, D.W.C. Nature. 2008, 455, 304
    (9) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (b) M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558
    (10) (a) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481 (b) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
    (11) List, B. Chem. Rev. 2007, 107, 5413.
    (12) Schneider, C.; Abels, F. Org. Biomol. Chem. 2014, 12, 3531
    (13) (a) Moyano, A.; Rios, R. Chem.Rev. 2011, 111, 4703. (b) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jorgensen, K. A. Chem. Commun. 2011, 47, 632. (c) Lin, L.; Zhang, J.; Ma, X.; Fu, X.; Wang, R. Org. Lett. 2011, 13, 6410.
    (14) Jusseau, X.; Chabaud, L.; Guillou, C. Tetrahedron 2014, 70, 2595.
    (15) Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 3666.
    (16) Lin, L.; Zhang, J.; Ma, X.; Fu, X.; Wang, R. Org. Lett. 2011, 13, 6410.
    (17) Yang, D.; Wang, L.; Zhao, D.; Han, F.; Zhang, B.; Wang, R. Chem. - Eur. J. 2013, 19, 4691.
    (18) Y. Zhang.;C. Yu.;Y. Ji.;W. Wang, Chem. Asian J., 2010, 5, 1303.
    (19) M. Terada.;K. Ando, Org. Lett., 2011, 13, 2026.
    (20) Zhang, W.; Tan, D.; Lee, R.; Tong, G.; Chen, W.; Qi, B.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. Angew. Chem., Int. Ed. 2012, 51, 10069.
    (21) (a) A. R. Choudhury.;S. Mukherjee, Org. Biomol. Chem. 2012, 10, 7313. (b) M. S. Manna.;V. Kumar.;S. Mukherjee, Chem. Commun.. 2012, 48, 5193
    (22) Chen, Y.-R.; Das, U.; Liu, M.-H.; Lin, W. J. Org. Chem. 2015, 80, 1985.
    (23) Xue, D.; Chen, Y.-C.; Wang, Q.-W.; Cun, L.-F.; Zhu, J.; Deng, J.-G. Org. Lett. 2005, 7, 5293.
    (24) (a) Curti, C.; Rassu, G.; Zambrano, V.; Pinna, L.; Pelosi, G.; Sartori, A.; Battistini, L.; Zanardi, F.; Casiraghi, G. Angew. Chem. Int. Ed. 2012, 51, 6200. (b) Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Zanardi, F.; Casiraghi, G. Adv. Synth. Catal. 2013, 355, 1881.
    (25) Rout, S.; Ray, S. K.; Unhale, R. A.; Singh, V. K. Org. Lett. 2014, 16, 5568
    (26) Xiao, X.; Mei, H.; Chen, Q.; Zhao, X.; Lin, L.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 580.
    (27) (a) Tan, B.; Chua, P. J.; Li, Y.; Zhong, G. Org. Lett. 2008, 10, 2437. (b) Tan, B.; Chua, P. J.;Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2008, 10, 3489. (c) Tan, B; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G., Org. Lett. 2010, 12, 2682. (d) Yang, D.; Wang, L.; Han, F.; Zhao, D.; Zhang, B.;Wang, R. Angew. Chem. Int. Ed. 2013, 52, 6739.
    (28) Das, U.; Chen, Y.-R.; Tsai, Y.-L.; Lin, W. Chem. Eur. J. 2013, 19, 7713.
    (29) (a) Madhusudhan Reddy, G.; Ko, C.-T.; Hsieh, K.-H.; Lee, C.-J.; Das, U.; Lin, W. J. Org. Chem. 2016, 81, 2420. (b) Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.
    (30) Hou, G.; Gosselin, F.; Li, W.; McWilliams, J. C.; Sun, Y.; Weisel, M.; O’Shea, P. D.; Chen, C.-Y.; Davies, I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882.
    (31) Quan, X. -J.; Ren, Z. -H.; Wang, Y. -Y.; Guan, Z. -H. Org. Lett., 2015, 17, 393
    (32) Manoni, F.; Connon, S. J. Angew. Chem. Int. Ed., 2014, 53, 2628
    (33) Lasri, J.; Gajewski, G.; Guedes da Silva, M. F. C.; Kuznetsov, M. L.; Fernandes, R. R.; Pombeiro,A. J. L. Tetrahedron 2012, 68, 7019.

    2.
    (1) For representative reviews on [3+2] cycloadditions, see: (a) Husigen, R. Angew. Chem. Int. Ed. 1963, 2, 565. (b) Trost, B. M. Angew. Chem. Int. Ed. 1986, 25, 1. (c) Kurt, V. G.; Jørgensen , K. V. Chem. Rev. 1998, 98, 863. (d) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
    (2) For representative reviews on [3+2] cycloadditions involving azomethine ylides, see: (a) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (c) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.
    (3) For the representative reports on the [3+2] cycloadditions involving azomethine ylides and coumarins, see: (a) Ghandi, M.; Taheri, A.; Abbasi, A. Tetrahedron, 2010, 66, 6744. (b) Moshkin, V. S.; Sos-novskikh, V. Y.; Slepukhin, P. A.; Röschenthaler, G.-V. Mendeleev. Commun., 2012, 22, 29. (c) Moshkin, V. S.; Sosnovskikh, V. Y.; Roschenthaler, G.-V. Tetrahedron, 2013, 69, 5884.
    (4) For the synthetic importance of benzopyran-containing tricyclic frameworks, see: (a) Colotta, V.; Cecchi, L.; Melani, F.; Filacchioni, G.; Martini, C.; Giannaccini, G.; Lucacchini, A. J. Med. Chem. 1990, 33, 2646. (b) Unangst, P. C.; Capiris, T.; Connor, D. T.; Heffner, T. G.; MacKenzie, R. G.; Miller, S. R.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1997, 40, 2688. (c) Houghton, P. J.; Woldemariam, T. Z.; Khan, A. I.; Burke, A.; Mahmood, N. Antivir. Res. 1994, 25, 235. (d) Pars, H.G.; Granchelli, F.E.; Razdan, R. K.; Keller, J. K. J. Med. Chem. 1976, 19, 445. (e) Dubuffet, T.; Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Loutz, A.; Millan, M. J.; Lavielle, G. Bioorg. Med. Chem. Lett. 1999, 9, 2059.
    (5) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174.
    (6) Xie, J.-W.; Fan, L.-P.; Su, H.; Li, X.-S.; Xu, D. C. Org. Biomol. Chem. 2010, 8, 2117.
    (7) Wang, C.; Yang, X.; Raabe, G.; Enders, D. Adv. Synth. Catal., 354, 2629
    (8) Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428.
    (9) Yang, Y. J.; Zhang, H. R.; Zhu, S. Y.; Zhu, P.; Hui, X. P. Org. Lett. 2014, 16, 5048
    (10) Sato, T.; Miyazaki, T.; Arai, J. Org. Chem., 2015, 80, 10346.
    (11) Fan, L. P.; Yang, W.-J.; Xu, D.-C.; Li, X.-S.; Xie, J.-W. Syn. Commun. 2011, 41, 3376.
    (12) Potowski, M.; Golz, C.; Strohmann, C.; Antohchick, A. P.; Waldmann, H. Bioorg. Med. Chem. 2015, 23, 2895.
    (13) Xiao, B.; Fu, Y.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
    (14) Fries, K; Finck, G. Chem. Ber. 1908, 41, 4271.
    (15) Synthesis of coumarin derivatives was reported by (a) Jang, Y.-J.; Syu, S.-e.; Chen, Y.-J.; Yang, M.-C.; Lin, W. Org. Biomol. Chem. 2012, 10, 843. (b) Bao, W.; Wang, Z.; Li, Y. Journal of Chemical Research 2003, 2, 294.

    無法下載圖示 本全文未授權公開
    QR CODE