簡易檢索 / 詳目顯示

研究生: 陳姵穎
Chen, Pei-Ying
論文名稱: 高分子電解質電洞傳輸層對鈣鈦礦太陽能電池之影響
The Influence of Polyelectrolytes Hole Transport Layer on Perovskite Solar Cells
指導教授: 趙宇強
Chao, Yu-Chiang
口試委員: 趙宇強 陳奕君 陳建彰
口試日期: 2021/07/12
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: p-i-n 結構鈣鈦礦太陽能電池P3CT電洞傳輸層改質
英文關鍵詞: p-i-n structure perovskite solar cells, P3CT, modification of the hole transport layer
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100750
論文種類: 學術論文
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1-1前言 1 1-2鈣鈦礦太陽能電池之發展歷史 3 1-3研究動機 9 第二章 特性及原理 10 2-1鈣鈦礦太陽能電池之介紹 10 2-1-1晶體結構 10 2-1-2物理及光電特性 11 2-2太陽能電池原理 14 2-3太陽能電池之特性參數 18 第三章 實驗製程 21 3-1實驗材料介紹 21 3-1-1陽極 21 3-1-2電洞傳輸層 21 3-1-3吸光主動層 22 3-1-4電子傳輸層 23 3-1-5陰極 24 3-1-6材料來源 25 3-2實驗器材 26 3-2-1紫外光臭氧清洗機 (UV-Ozone) 26 3-2-2手套箱 (Glovebox) 27 3-2-3旋轉塗佈機 (Spin coater) 28 3-2-4蒸鍍機 (Evaporator) 28 3-3製作流程 29 3-3-1 ITO玻璃基板蝕刻 29 3-3-2 ITO玻璃基板清洗 29 3-3-3電洞傳輸層-PEDOT:PSS、P3CT旋塗 29 3-3-4鈣鈦礦吸光層-MAPbI3旋塗 30 3-3-5電子傳輸層-PC61BM、BCP旋塗 30 3-3-6 銀電極熱蒸鍍 31 3-4量測儀器 32 3-4-1太陽光模擬器 (Solar Simulator) 32 3-4-2 X射線繞射分析儀 (XRD) 32 3-4-3掃描式電子顯微鏡 (SEM) 33 第四章 實驗結果與討論 34 4-1 PEDOT:PSS 及 P3CT 元件結構 34 4-2 P3CT-Na作為電洞傳輸層 35 4-2-1 P3CT-Na 厚度對元件效能之影響 35 4-2-2 P3CT-Na 溶液配置時間對元件效能之影響 36 4-2-3 P3CT-Na退火溫度對元件效能之影響 37 4-3 P3CT-K作為電洞傳輸層 40 4-3-1 P3CT-K 厚度對元件效能之影響 40 4-3-2 P3CT-K 溶液配置時間對元件效能之影響 41 4-3-3 P3CT-K 退火溫度對元件效能之影響 42 4-4 P3CT-Cs作為電洞傳輸層 44 4-4-1 P3CT-Cs 厚度對元件效能之影響 44 4-4-2 P3CT-Cs 溶液配置時間對元件效能之影響 45 4-4-3 P3CT-Cs退火溫度對元件效能之影響 46 4-5 P3CT-Rb作為電洞傳輸層 48 4-5-1 P3CT-Rb 退火溫度對元件效能之影響 48 第五章 結論 50 參考文獻 51

    [1] H. L. Wells and Z. Anorg, “Über die Cäsium‐ und Kalium‐Bleihalogenide, “ Journal of Inorganic and General Chemistry, Volume 3, Issue 1, Pages 195-210 (1893)
    [2] D. Weber and Z. Naturforsch, “CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure, ” A Journal of Chemical Sciences, Volume 33, Issue 12, Pages 1443-1445 (1978).
    [3] D. B. Mitzi et al., “Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheet, ” Science, Volume 267, Issue 5203, Pages 1473-1476 (1995)
    [4] M. Era and S. Oka, “PbBr-based layered perovskite film using the Langmuir-Blodgett technique, ” Thin Solid Films, Volume 376, Issues 1–2, Pages 232-235 (2000)
    [5] M. Era and A. Shimizu,” PBI-Based Layered Perovskite Organic-Inorganic Superlattice Film by the Langmuir-Blodgett Technique, ” Molecular Crystals and Liquid Crystals Science and Technology, Volume 370, Issue 1, Pages 215-218 (2001)
    [6] Y. Takeoka et al., “Incorporation of conjugated polydiacetylene systems into organic–inorganic quantum-well structures, ” Chemical Communications, Issue 24, Pages 2592-2593 (2001)
    [7] T. Kondo et al., “Resonant third-order optical nonlinearity in the layered perovskite-type material (C6H13NH3)2PbI4, ” Solid State Communications, Volume 105, Issue 8, Pages 503-506 (1998)
    [8] K. Tanaka et al., “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3, ” Solid State Communications, Volume 127, Issues 9–10, Pages 619-623 (2003)
    [9] J. Ishi et al., “Third-Order Optical Nonlinearity Due to Excitons and Biexcitons in a Self-Organized Quantum-Well Material (C6H13NH3)2PbI4, ” Journal of Nonlinear Optical Physics & Materials, Volume 07, Issue 1, Pages. 153-159 (1998)
    [10] K. Ema et al., “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material, ” PHYSICAL REVIEW B, Volume 73, Issue 24, Pages 241310(R) (2006)
    [11] A. Kojima, et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, ” Journal of the American Chemical Society, Volume 131, Issue 17, Pages 6050–6051 (2009)
    [12] J.-H. Im et al., “6.5% efficient perovskite quantum-dot-sensitized solar cell, ” Nanoscale, Volume 3, Issue 10, Pages 4088-4093 (2011)
    [13] H.-S. Kim, et al., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, ” scientific reports 2, Number 591 (2012)
    [14] M. M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, Volume 338, Issue 6107, Pages 643-647 (2012)
    [15] A. Kojima, et al., “Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media, ” Chemistry Letters, Volume 41, Issue 4, Pages 397-399 (2012)
    [16] S. D. Stranks et al., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, ” Science, Volume 342, Issue 6156, Pages 341-344 (2013)
    [17] J. H. Noh et al., “Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, ” Nano Letters, Volume 13, Issue 4, Pages 1764–1769 (2013)
    [18] M. Habibi et al., “Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells, ” Renewable and Sustainable Energy Reviews, Volume 62, Pages 1012-1031 (2016)
    [19] J. M. Ball et al., “Low-temperature processed meso-superstructured to thin-film perovskite solar cells, ” Energy & Environmental Science, Volume 6, Issue 6, Pages 1739-1743 (2013)
    [20] D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, ” nature photonics, Volume 8, pages133–138 (2014)
    [21] J. Y. Jeng et al., “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, ” Advanced Materials, Volume 25, Issue 27, Pages 3727-3732 (2013)
    [22] N. J. Jeon et al., “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, ” Nature Materials, Volume 13, Pages 897-903 (2014)
    [23] S. H. Chang et al., “Effects of the washing-enhanced nucleation process on the material properties and performance of perovskite solar cells, ” Journal of Alloys and Compounds, Volume 808 (2019)
    [24] J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells, ” Nature, Volume 499, Pages 316-319 (2013)
    [25] J. H. Im et al., “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, ” APL Materials, Volume 2, Issue 8 (2014)
    [26] Cheng Bi et al., “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing, ” Journal of Materials Chemistry A, Volume 2, Issue 43, Pages 18508-18514 (2014)
    [27] M. Liu, M. B. Johnston and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition, ” Nature, Volume 501, Pages 395-398 (2013)
    [28] Yuchuan Shao et al., “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, ” Nature Communications 5, Number 5784 (2014)
    [29] L. Zuo et al., “Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer, ” Journal of the American Chemical Society, Volume 137, Issue 7, Pages 2674-2679 (2015)
    [30] F. Wang et al., “Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells, ” Advanced Materials, Volume 28, Issue 45, Pages 9986-9992 (2016)
    [31] X. Zheng et al., “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, ” Nature Energy, Volume 2, Number 17102 (2017)
    [32] https://www.nrel.gov/pv/cell-efficiency.html
    [33] Z. Xiao et al., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, ” Energy & Environmental Science, Volume 7, Issue 8, Pages 2619-2623 (2014)
    [34] R. Pacios et al., “Effects of Photo-oxidation on the Performance of Poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-Phenyl C61 -Butyric Acid Methyl Ester Solar Cells, ” Advanced Functional Materials, Volume16, Issue16, Pages 2117-2126 (2006)
    [35] K. Kawano et al., “Degradation of organic solar cells due to air exposure, ” Solar Energy Materials and Solar Cells, Volume 90, Issue 20, Pages 3520-3530 (2006)
    [36] M. Jørgensen, K. Norrman and F. C. Krebs, “Stability/degradation of polymer solar cells, ” Solar Energy Materials & Solar Cells, Volume 92, Pages 686-714 (2008)
    [37] H. Yan et al., “High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices, ” Journal of the American Chemical Society, Volume 127, Issue 9, Pages 3172–3183 (2005)
    [38] X. Li et al., “Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells, ” Journal of Mat- erials Chemistry A, Volume 3, Issue 29, Pages 15024-15029 (2015)
    [39] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology, ” Materials Today, Volume 18, Issue 2, Pages 65-72 (2015)
    [40] M. A. Green, A. Ho-Baillie and H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, Volume 8, Pages 506–514 (2014)
    [41] G. E. Eperon et al., “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, ” Energy & Environmental Science, Volume 7, Issue 3, Pages 982-988 (2014)
    [42] M. Anaya et al., “ABX3 Perovskites for Tandem Solar Cells, ” Joule, Volume 1, Issue 4, Pages 769-793 (2017)
    [43] J. Tong et al., “Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells, ” Science, Volume 364, Issue 6439, Pages 475-479 (2019)
    [44] M. Saliba et al., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, ” Science, Volume 354, Issue 6309, Pages 206-209 (2016)
    [45] K. Sun et al., “Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices, ” Journal of Materials Science:Materials in Electronics, Volume 26, Issue 7, Pages 1-25 (2015)
    [46] S. Li et al., “Highly efficient inverted perovskite solar cellsincorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V, ” Nanoscale, Volume 12, Issue 6, Pages 3686-3691 (2020)
    [47] S. H. Yoo, J. M. Kum and S. O. Cho, “Tuning the electronic band structure of PCBM by electron irradiation, ” Nanoscale Research Letters, Volume 6, Number 545 (2011)
    [48] B. Rivkin et al., “Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells, ” ACS Omega, Volume 3, Issue 8, Pages 10042-10047 (2018)
    [49] http://setcas.com/
    [50] http://www.scienchem.com.tw/it-purelab-4gb.html
    [51] http://www.olink.com.tw/product_56098.html

    無法下載圖示 電子全文延後公開
    2024/07/31
    QR CODE