簡易檢索 / 詳目顯示

研究生: 楊雅婷
Yang, Ya-Ting
論文名稱: 一位高中化學教師使用建模本位教材的教學歷程之個案研究 ─ 以電化學概念之教學為例
A case study of the use and the processes of modeling – based instruction by a high school chemistry teacher ─ In the area of electrochemistry.
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 189
中文關鍵詞: 建模建模教學電化學建模學科教學知識
英文關鍵詞: Modeling, Modeling-based Teaching, Electrochemistry, Modeling - Pedagogical content knowledge (M-PCK)
DOI URL: https://doi.org/10.6345/NTNU202205159
論文種類: 學術論文
相關次數: 點閱:133下載:61
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討一位高中化學教師使用建模本位教材的教學歷程之個案研究─ 以電化學概念之教學為例。以具有科學教育背景的高中化學教師為研究對象,以此教師的四個班級進行教學,分別為建模與模擬組、建模與操作組、一般與模擬組、一般與操作組,以建模教學與一般教學的教學策略,對學生進行電化學概念的教學。從中探討此教師在建模教學的教學歷程中,教師的建模學科教學知識、與其發展的動態過程、以及建模教學與一般教學的學科教學知識之比較,過程將輔以一般教學進行比較。
    使用「教學前中後教師晤談問卷」、「教學記錄表」、「學生學習信心/興趣量表與問卷」,在整個教學歷程中進行研究。透過教師、學生、整個情境的各個因素與面向間彼此的交互作用,來探討教師的建模學科教學知識;透過教學推理的理解、轉換、教學、評量、反省、新的理解六個過程,來探討教師的建模學科教學知識發展的動態過程;並以SWOT分析建模教學與一般教學的學科教學知識之比較,輔以學生的情意結果對照比較。
    本研究結果,教師的建模學科教學知識與其發展的動態過程,提供一個重要的建模學科教學知識 (M-PCK) 發展範例,教師對於建模教學擁有一定的理論基礎與教學經驗,實踐過程以明確外顯式的建模歷程,配合模型與建模觀點的語言解釋、建模文本、建模教學PPT、開放式Q&A、系統性板書、次微觀影片、與開放性紙筆測驗等呈現,完整進行建模教學,凸顯建模教學的特色。本研究也提出未來建模教學在實踐推廣的建議與方向,期許讓教學與學習,能達到更好的進展。

    The purpose of this study was to investigate how a high school chemistry teacher adopting modeling–based instruction for teaching electrochemistry. The teacher with science education background taught electrochemistry to four classes, two modeling groups (one with modeling and simulation, and the other with modeling and hands-on experiment), and two comparative groups without explicit modeling processes (one with modeling and simulation, and the other with modeling and hands-on experiment). The teacher’s modeling pedagogical content knowledge (M-PCK) was investigated and comparisons of the differences of M-PCK among four groups were analyzed.
    Three instruments were used, namely, questionnaire (pre, mid, and post), "teaching record table", and “questionnaires for students’ confidence and interest in learning”. The design of these instruments was to capture teacher’s concept of modeling-based teaching, interaction between the teacher and the students, and the processes of instruction. The elements for the processes to be analyzed were pedagogical reasoning, comprehension, transformation, instruction, evaluation, reflection and new comprehension. Finally, using SWOT analysis was applied to compare Modeling Teaching and general teaching, combined with the results of the students' affection.
    The results of this study revealed that the teacher developed her modeling-based teaching knowledge and practice dynamically and gradually. The teacher's teaching model has theoretical basis and herself with teaching experience. The modeling-based instruction provided explicit explanations about the modeling processes, modeling-based text, modeling teaching materials (e.g. PPT), an open-ended Q & A, systematic writing on the blackboard, video clips of sub-microscopic representations, paper and pencil tests, highlighting the characteristics of modeling teaching. In sum, recommendations and implications about implementation of modeling-based instruction in practice are discussed.

    誌謝 I 摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第壹章 緒論 1 第一節 研究背景與重要性 1 第二節 研究目的 3 第三節 研究問題 4 第四節 研究範圍與限制 6 第五節 名詞釋義 7 第貳章 文獻探討 9 第一節 學科教學知識之相關研究 10 第二節 模型為基礎的建模教學之相關研究 14 第三節 電化學概念之相關研究 17 第參章 研究方法 19 第一節 研究設計 19 第二節 研究對象 26 第三節 研究工具 27 第四節 資料分析 32 第五節 研究流程 34 第肆章 研究結果 35 第一節 教師的建模學科教學知識 35 第二節 教師的建模學科教學知識發展的動態過程 78 第三節 建模教學與一般教學之比較 129 第伍章 結論與建議 151 第一節 研究結論與討論 151 第二節 研究建議 157 第三節 研究特色 161 第四節 個人省思 162 參考文獻 163 附錄1 167 附錄2 171 附錄3 175 附錄4 179 附錄5 181 附錄6 183 附錄7 187

    【中文部分】
    1.江玉婷 (1994)。國中地球科學教師學科教學知識之研究。國立臺灣師範大學科學教育研究所碩士論文 (未出版)。
    2.邱美子 (2001)。國中電化學電腦動畫輔助教學之學習成效研究。國立臺灣師範大學化學研究所碩士論文 (未出版)。
    3.邱美虹 (2000)。概念改變研究的省思與啟示。科學教育學刊, 8(1), 1-34。
    4.邱美虹 (2007)。化學教育中建模模式的研發與實踐─子計畫四:以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與還原」之影響。行政院國家科學委員會專題研究計畫(計畫編號:NSC 95-2511-s003-025-MY2),未出版。
    5.邱美虹 (2014)。以系統化方式進行模型與建模能力之線上教學與評量系統—探討科學課程、概念發展路徑與建模能力之研究。科技部計畫(計畫編號:MOST 102-2511-S-003 -006 -MY3),未出版。
    6.林香岑 (2000)。高中電化學概念媒體教學與教師教學策略之研究。國立臺灣師範大學化學研究所碩士論文 (未出版)。
    7.教育部 (2008)。普通高級中學必修科目「基礎化學」與選修科目「化學」課程綱要。檢自:http://www.k12ea.gov.tw/files/common_unit/e4fde167-fc32-485b-8296-996f58fe3303/doc/09%E5%8C%96%E5%AD%B8.pdf
    8.陳婉女勻 (2012)。由概念改變探討科學史建模教學對學生熱傳播概念與建模能力之影響。國立臺灣師範大學科學教育研究所碩士論文 (未出版)。
    9.郭順利 (1997)。高中學生在電化學的錯誤概念。國立臺灣師範大學化學研究所碩士論文 (未出版)。
    10.張志康和邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
    11.張秀澂 (2002)。電腦動畫融入教學對國中生電化學學習成就影響之研究。國立臺灣師範大學化學系在職進修碩士班碩士論文 (未出版)。
    12.甄曉蘭 (2003)。教師的課程意識與教學實踐。教育研究集刊,49(1),63-94。
    13.劉俊庚和邱美虹 (2010b)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。
    14.劉俊庚 (2011)。探討模型與建模對於學生原子概念學習之影響。國立台灣師範大學科學教育研究所博士論文 (未出版)。
    15.賴俊文 (2010)。探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響。國立臺灣師範大學科學教育研究所碩士論文 (未出版)。

    【英文部分】
    1. Clement, C. P., J. S. Krajcik, and H. Borko. (1993). The influence of an intensive inservice workshop on pedagogical content knowledge growth among science chemical demonstrators. Journal of Research in Science Teaching 30: 21-43.
    2. Calderhead, J. (1996). Teacher belief and knowledge. In B. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 709-725). New York: Macmillan.
    3. Garnett, P.J., & Treagust, D.F. (1992).Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Researchin ScienceTeaching, 29(2), 121-142.
    4. Gilbert, J. K. (2004). Models and modeling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115 – 130.
    5. Harrison, A. G. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401-435.
    6. Reynolds, D. (1992). From school effectiveness to school development: Problems and possibilities. In A. M. Indrebo, L. Monsen & T. Alvik (Eds.), Theory and practice
    of school-based evaluation: A research perspective (pp. 25-51). Lillehammer: Oppland College.
    7. Sanger, M.J., & Greenbowe, T.J. (1997).Students' Misconceptions in Electrochemistry Regarding Current Flow in Electrolyte Solutions and the Salt Bridge.Journal of
    Chemical Education, 74(7), 819-823.
    8. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., O., Archer, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Makingscientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632 ñ 654.
    9. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.Educational Research, 15(2), 4-14.
    10. Shulman, L. S., & Sykes, G. (1986). A national board for teaching? In search of a bold standard. Unpublished paper prepared for the Carnegie Task Force on Teaching as a Profession.
    11. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
    12. Sins, P.H.M., Savelsbergh, E.R. & Joolingen, W.R.van, (2005), The Difficult Process of Scientific Modelling: An Analysis of Novices’ Reasoning During Computer-based Modelling, International Journal of Science Education 27(14): 1695–1721.
    13. Van Driel, J. H., Verloop, N., & Vos, W. D. (1998). Developing science teachers'pedagogical content knowledge. Journal of Research in Science Teaching, 35(6),673-695.
    14. Verloop, N. (1992). Praktijkkennis van docenten: Een blinde vlek van de onderwijskunde [Craft knowledge of teachers: A blind spot in educational research]. Pedagogische Studiën, 69, 410–423.
    15. Wilson, S., Shulman, L., & Richert, A. (1987). 150 different ways of knowing: Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring teachers’ thinking (pp. 104–123). London: Cassell.

    下載圖示
    QR CODE