簡易檢索 / 詳目顯示

研究生: 黎育蕙
Li, Yu-Huei
論文名稱: 奈米複合材料局部表面電漿共振光纖毛細管偵測器的發展與應用
The Development and Application of Fiber Optic Capillary Detector Employing the Localized Surface Plasmon Resonance of Nanocomposite Materials
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 有機揮發性化合物奈米複合材料二氧化矽局部表面電漿共振光纖毛細管鎖相放大器
英文關鍵詞: voltaic organic compounds, nanocomposites, SiO2, localized surface plasmon resonance, fiber-optic capillary, lock-in amplifier
DOI URL: https://doi.org/10.6345/NTNU202202650
論文種類: 學術論文
相關次數: 點閱:39下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光纖毛細管(FOCap)內塗佈奈米複合材料,透過局部表面電漿共振(LSPR)量測揮發性有機化合物(VOCs)之含量,並成功串聯氣相層析儀(GC)做為氣相層析偵測器。為了使偵測器能夠應用於微小化氣相層析系統,本研究使用低功率的發光二極體(LED)搭配鎖相放大器(LIA)增強光電二極體之訊號。在FOCap中分別塗佈受中孔洞二氧化矽保護的奈米金粒子複合材料(SiO2@AuNPs)和受碳鏈保護的奈米金粒子於多孔聚合物內(C12-AuNPs@poly(GMA-EDMA))作為感測材料,使用光譜儀測量LSPR吸收光譜,光譜的變化量足以偵測VOCs且吸脫附時間不會過長,兩種材料皆有當作GC偵測器的潛力。SiO2@AuNPs光纖毛細管偵測器對於常見的VOCs皆有良好的靈敏度,尤其對於極性較高之化合物偵測感度更佳。分析物極性不同,SiO2@AuNPs毛細管偵測器對其吸附作用力亦不相同,因此每個化合物都有不同的偵測下限(LOD),範圍介於2.56-274.4 ng,雖然對極性化合物有良好的偵測下限,但在再現性測試的實驗中發現回收率及再現性表現不如預期。為了使光纖毛細管偵測器能夠應用於微小化GC系統,使用放光範圍落在奈米複合材料LSPR範圍的LED作為光源並以光電二極體擷取訊號。在LED光徑上放置光束斷續器改善雜散光的干擾,搭配LIA以增強光電二極體的訊號,C12-AuNPs@poly(GMA-EDMA)光纖毛細管偵測器在此實驗裝置下有更好的偵測表現,最低的偵測下限為4.2 ng (左旋檸烯),本研究成功開發具低功率、高表現性等優點的微小化GC偵測器。

    The fiber-optic capillary (FOCap) detector was developed as gas chromatography (GC) detector for voltaic organic compounds (VOCs) using the nanocomposite materials localized surface plasmon resonance (LSPR) intensity variance. These nanocomposites coated FOCap detector was designed to integrate micro GC system by using low power selected wavelength LED and photodiode amplified by a lock-in amplifier (LIA). Two nanocomposites materials (mesoporous silica coated gold nanoparticles (SiO2@AuNPs) and thiolate protected gold nanocomposited porous polymer (C12-AuNPs@poly(GMA-EDMA)) were selected to be immobilized on the FOCap as sensing materials. The LSPR intensity was enhanced by eluting VOCs for both nano materials. With CCD measurements, the light intensity in the LSPR range can be used as GC signals for VOCs eluents measurement. The SiO2@AuNPs coated FOCap detector has been demonstrated high sensitivity for common VOCs detection, especially for polar targets. The limits of detection (LOD) were range from 2.56 to 274.4 ng because of different volatility and affinity between target VOCs and SiO2@AuNPs. The SiO2@AuNPs coated FOCap detector was effected by polar target compounds in signal recovery and performance. For future integration in a micro GC system, the light intensity over LSPR range was evaluated by a photodiode with wavelength selected LED as light source and a LIA. The emitting range range of LED was laid in the LSPR range. The photodiode signals were amplified by a LIA and LED was modulated by an optical chopper. A thiolate protected gold nanocomposites porous polymer coated FOCap detector was obtained by a LIA system and the performance of FOCap detector was improved. The best LOD can be down to 4.2 ng ((R)-(+)-limonene). With low power consumption and good performance, the nanocomposites coated FOCap detector can be used as micro GC detector.

    謝誌 i 摘要 ii Abstract iv 目錄 vi 圖目錄 x 表目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 揮發性有機化合物 3 1.3 局部表面電漿共振偵測器 5 1.3.1 漸逝波原理 5 1.3.2 表面電漿共振 6 1.3.3 局部表面電漿共振 9 1.3.4 LSPR的應用 13 1.4 二氧化矽 15 1.4.1 SiO2的備製25 15 1.4.2 SiO2的應用 17 1.5 光纖式偵測器 19 1.5.1 光纖的介紹 19 1.5.2 LSPR光纖式偵測器的應用 20 1.6 鎖相放大的原理 22 第二章 實驗部分 25 2.1 實驗藥品與儀器設備 25 2.1.1 實驗藥品 25 2.1.2 儀器設備 28 2.2 材料合成與光纖毛細管修飾 31 2.2.1 合成水相AuNPs50 31 2.2.2 AuNPs自組裝於光纖毛細管 31 2.2.3 SiO2修飾於AuNPs51 31 2.3 系統架設 32 2.3.1 流動注射系統架設 32 2.3.2 光纖毛細管偵測器量測系統 33 2.3.3 光纖毛細管偵測器搭配LIA 34 第三章 結果與討論 35 3.1 AuNPs水溶液合成 35 3.2 SiO2@AuNPs的鑑定與分析 36 3.2.1 AuNPs自組裝於玻璃基材 36 3.2.2 SiO2修飾於AuNPs 37 3.3 SiO2薄膜生長時間探討 39 3.4 多層SiO2@AuNPs探討 41 3.5 SiO2@AuNPs光纖毛細管偵測器特性 42 3.5.1 通入VOCs的LSPR吸收光譜變化 42 3.5.2 VOCs的濃度換算55 44 3.5.3 在FIA系統的再現性測試 45 3.5.4 在FIA系統的校正曲線 46 3.5.5 SiO2@AuNPs層數的選擇 49 3.6 SiO2修飾時間的選擇 51 3.7 SiO2@AuNPs光纖毛細管偵測器的條件探討 52 3.7.1 流速的探討 52 3.7.2 溫度的探討 54 3.7.3 偵測器的長度比較 56 3.8 SiO2@AuNPs光纖毛細管偵測器的感測 59 3.8.1 非極性混合樣品測試 59 3.8.2 極性混合樣品測試 64 3.8.3 混合樣品的極性對偵測器的影響 66 3.9 SiO2@AuNPs光纖毛細管偵測器再現性測試 68 3.10 鎖相放大器系統的條件探討 70 3.10.1 光源的選擇 74 3.10.2 參考頻率的探討 76 3.10.3 鎖相放大器的放大選擇 78 3.10.4 光電二極體的放大選擇 80 3.10.5 時間常數的探討 82 3.11 C12-AuNPs@poly(GMA-EDMA)光纖毛細管偵測器再現性測試 84 3.12 鎖相放大器系統下混合樣品測量 85 第四章 結論 91 文獻資料 93

    1. 行政院環境保護署環境檢驗所 空氣和物理的檢測方法. http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR.
    2. 行政院環境保護署 揮發性有機物空氣汙染管制及排放標準. http://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040300030003500-1020103.
    3. Cancer, I. A. f. R. o., IARC: Outdoor air pollution a leading environmental cause of cancer deaths. 2013.
    4. 洪一德. 石化工業苯暴露勞工健康風險評估. 國立高雄第一科技大學, 高雄市, 2009.
    5. Wang, L.; Vasilev, C.; Canniffe, D. P.; Wilson, L. R.; Hunter, C. N.; Cadby, A. J., Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy. Opt. Express 2012, 20 (3), 3311-3324.
    6. Senior, J. M., Optical Fiber Communications: Principles and Practice. 1985.
    7. 戴致陽. 利用表面電漿耦合激發膠狀量子點所產生之螢光特性. 國立中山大學, 高雄市, 2011.
    8. Wood, R. W., On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London 1902, 18 (1), 269.
    9. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 1968, 216 (4), 398-410.
    10. Kretschmann, E., The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Optics Communications 1972, 5 (5), 331-336.
    11. Park, H., Study of Surface Plasmon Resonance in Metal and Alloy Nanofilms using Maxwell Description and Metamaterial Simulation in COMSOL. 2015.
    12. Kubo, R., Generalized Cumulant Expansion Method. Journal of the Physical Society of Japan 1962, 17 (7), 1100-1120.
    13. 陳昱銓. 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立. 輔仁大學, 新北市, 2008.
    14. Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 2007, 58 (1), 267-297.
    15. Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12 (3), 788-800.
    16. Trieu, K.; Heider, E. C.; Brooks, S. C.; Barbosa Jr, F.; Campiglia, A. D., Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis. Talanta 2014, 128, 196-202.
    17. 王淑民. 利用金奈米粒子之侷域性表面電漿效應提升有機太陽能電池元件特性. 國立交通大學, 新竹市, 2012.
    18. Liedberg, B.; Nylander, C.; Lunström, I., Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 1983, 4, 299-304.
    19. Zhao, J.; Zhang, X.; Yonzon, C. R.; Haes, A. J.; Van Duyne, R. P., Localized surface plasmon resonance biosensors. Nanomedicine (Lond) 2006, 1 (2), 219-28.
    20. Zhang, Z.; Chen, Z.; Wang, S.; Cheng, F.; Chen, L., Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase. ACS Applied Materials & Interfaces 2015, 7 (50), 27639-27645.
    21. Wang, K.; Shangguan, L.; Liu, Y.; Jiang, L.; Zhang, F.; Wei, Y.; Zhang, Y.; Wang, K.; Liu, S., In-Situ Detection and Imaging of Telomerase Activity in Cancer Cell Lines via Disassembly of Plasmonic Core-Satellites Nanostructured Probe. Analytical Chemistry 2017.
    22. Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J., Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta 2007, 73 (2), 358-365.
    23. Chen, K.-J.; Lu, C.-J., A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 2010, 81 (4–5), 1670-1675.
    24. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968, 26 (1), 62-69.
    25. 林佳瑩. 以有機鹼催化溶-凝膠反應製備有機-無機複合材料之研究. 國立交通大學, 2006.
    26. Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. 1979.
    27. Scherer, C. J. B. a. G. W., Sol-Gel Science Academic Press: 1990; p 102.
    28. Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P., Synthesis of Nanosized Gold−Silica Core−Shell Particles. Langmuir 1996, 12 (18), 4329-4335.
    29. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L. M., Silica coating of silver nanoparticles using a modified Stöber method. Journal of Colloid and Interface Science 2005, 283 (2), 392-396.
    30. Ruach-Nir, I.; Bendikov, T. A.; Doron-Mor, I.; Barkay, Z.; Vaskevich, A.; Rubinstein, I., Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing. Journal of the American Chemical Society 2007, 129 (1), 84-92.
    31. Chaikin, Y.; Kedem, O.; Raz, J.; Vaskevich, A.; Rubinstein, I., Stabilization of Metal Nanoparticle Films on Glass Surfaces Using Ultrathin Silica Coating. Analytical Chemistry 2013, 85 (21), 10022-10027.
    32. 李冠儀. 奈米金-氧化矽多層結構應用於有機氣體光學探針之研製. 國立臺灣師範大學, 台北市, 2016.
    33. Keller, B. K.; DeGrandpre, M. D.; Palmer, C. P., Waveguiding properties of fiber-optic capillaries for chemical sensing applications. Sensors and Actuators B: Chemical 2007, 125 (2), 360-371.
    34. Jorgenson, R. C.; Yee, S. S., A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical 1993, 12 (3), 213-220.
    35. Tang, J.-L.; Cheng, S.-F.; Hsu, W.-T.; Chiang, T.-Y.; Chau, L.-K., Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sensors and Actuators B: Chemical 2006, 119 (1), 105-109.
    36. Paul, D.; Dutta, S.; Biswas, R., LSPR enhanced gasoline sensing with a U-bent optical fiber. Journal of Physics D: Applied Physics 2016, 49 (30), 305104.
    37. Ortega-Mendoza, J. G.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Morán, P.; Villegas-Hernández, D.; Chávez, F., Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End. Sensors (Basel, Switzerland) 2014, 14 (10), 18701-18710.
    38. Wakao, M.; Watanabe, S.; Kurahashi, Y.; Matsuo, T.; Takeuchi, M.; Ogawa, T.; Suzuki, K.; Yumino, T.; Myogadani, T.; Saito, A.; Muta, K.-i.; Kimura, M.; Kajikawa, K.; Suda, Y., Optical Fiber-Type Sugar Chip Using Localized Surface Plasmon Resonance. Analytical Chemistry 2017, 89 (2), 1086-1091.
    39. Wei, J.; Zeng, Z.; Lin, Y., Localized Surface Plasmon Resonance (LSPR)-Coupled Fiber-Optic Nanoprobe for the Detection of Protein Biomarkers. Methods in molecular biology (Clifton, N.J.) 2017, 1571, 1-14.
    40. Gowri, A.; Sai, V. V. R., Development of LSPR based U-bent plastic optical fiber sensors. Sensors and Actuators B: Chemical 2016, 230, 536-543.
    41. Horlick, G.; Betty, K. R., Inexpensive lock-in amplifiers based on integrated circuit phase-locked loops. Analytical Chemistry 1975, 47 (2), 363-366.
    42. Sengupta, S. K.; Farnham, J. M.; Whitten, J. E., A Simple Low-Cost Lock-In Amplifier for the Laboratory. Journal of Chemical Education 2005, 82 (9), 1399.
    43. Neuzil, P.; Reboud, J., Palm-Sized Biodetection System Based on Localized Surface Plasmon Resonance. Analytical Chemistry 2008, 80 (15), 6100-6103.
    44. Wallace, R. A.; Sepaniak, M. J.; Lavrik, N. V.; Datskos, P. G., Evaluation of Porous Silicon Oxide on Silicon Microcantilevers for Sensitive Detection of Gaseous HF. Analytical Chemistry 2017, 89 (11), 6272-6276.
    45. Thaler, K. M.; Berger, C.; Leix, C.; Drewes, J.; Niessner, R.; Haisch, C., Photoacoustic Spectroscopy for the Quantification of N2O in the Off-Gas of Wastewater Treatment Plants. Analytical Chemistry 2017, 89 (6), 3795-3801.
    46. Waechter, H.; Munzke, D.; Jang, A.; Loock, H.-P., Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy. Analytical Chemistry 2011, 83 (7), 2719-2725.
    47. Ratcliff, E. L.; Veneman, P. A.; Simmonds, A.; Zacher, B.; Huebner, D.; Saavedra, S. S.; Armstrong, N. R., A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light-Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors. Analytical Chemistry 2010, 82 (7), 2734-2742.
    48. Negou, J. T.; Avila, L. A.; Li, X.; Hagos, T. M.; Easley, C. J., Automated Microfluidic Droplet-Based Sample Chopper for Detection of Small Fluorescence Differences Using Lock-In Analysis. Analytical Chemistry 2017.
    49. Sigma-Aldrich. http://www.sigmaaldrich.com/.
    50. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
    51. Yasukuni, R.; Ouhenia-Ouadahi, K.; Boubekeur-Lecaque, L.; Félidj, N.; Maurel, F.; Métivier, R.; Nakatani, K.; Aubard, J.; Grand, J., Silica-Coated Gold Nanorod Arrays for Nanoplasmonics Devices. Langmuir 2013, 29 (41), 12633-12637.
    52. Schmitt, J.; Mächtle, P.; Eck, D.; Möhwald, H.; Helm, C. A., Preparation and Optical Properties of Colloidal Gold Monolayers. Langmuir 1999, 15 (9), 3256-3266.
    53. Xu, H.; Käll, M., Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sensors and Actuators B: Chemical 2002, 87 (2), 244-249.
    54. Cheng, S.-F.; Chau, L.-K., Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing. Analytical Chemistry 2003, 75 (1), 16-21.
    55. Nelson, G., Gas mixtures: preparation and control. 1992.
    56. Limits of Detection. http://www.chem.utoronto.ca/coursenotes/analsci/stats/LimDetect.html.
    57. 凌永健;陳秋雲;黃依萍, 化學分析的偵測極限. 科儀新知 1994, 16 (81), 70-83.
    58. 沈宥榛. 多重吸附劑前濃縮管搭配波導毛細管偵測揮發性有機氣體. 輔仁大學, 新北市, 2016.
    59. Knob, R.; Breadmore, M. C.; Guijt, R. M.; Petr, J.; Macka, M., Porous layer open tubular monolith capillary column: switching-off the reaction kinetics as the governing factor in their preparation by using an immiscible liquid-controlled polymerization. RSC Advances 2013, 3 (47), 24927-24930.

    下載圖示
    QR CODE