簡易檢索 / 詳目顯示

研究生: 莊雅苹
Chuang, Ya-Ping
論文名稱: 透過人類降鈣素雙突變序列的相關片段研究其對人類降鈣素纖維化的抑制原因
Investigating the inhibitory property of DM hCT on hCT fibrillization via its relevant peptide fragments
指導教授: 杜玲嫻
Tu, Ling-Hsien
口試委員: 洪嘉呈
Horng, J. C.
孫英傑
Sun, Ying-Chieh
杜玲嫻
Tu, Ling-Hsien
口試日期: 2022/07/12
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 人類降鈣素類澱粉蛋白纖維胜肽藥物α 螺旋
英文關鍵詞: Human calcitonin, amyloid, peptide drug, α-helix
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201118
論文種類: 學術論文
相關次數: 點閱:42下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胜肽不可逆的聚集極大地限制了其作為藥物的生物利用和治療活性,而有效抑制胜肽聚集具有很高的難度。人類降鈣素 (human calcitonin, hCT) 是一種由甲狀腺濾泡旁細胞 (C細胞) 分泌且包含32個殘基的賀爾蒙胜肽,其可以調節血鈣水平,維持骨骼形狀,因此可用於治療代謝性骨病,如骨質疏鬆症和佩吉特病。然而人類降鈣素就是因為具有高度形成澱粉樣蛋白纖維 (Amyloid) 的傾向,而降低其原始功能並限製其作為藥物的潛力。由於鮭魚降鈣素具較高的生物活性和較低的聚集傾向,目前其替代人類降鈣素作為廣泛使用的治療劑。不幸的是,鮭魚降鈣素與人類降鈣素的序列僅有一半相同 (32個胺基酸中有16個與人類降鈣素不同) ,這會使某些臨床治療中病人產生嚴重的副作用,包括厭食、嘔吐和免疫反應等。過去研究顯示,人類降鈣素中胺基酸的改變可以改善其聚集傾向。本實驗室先前的研究中,我們證明雙突變的人類降鈣素 (Y12L N17H hCT, DM hCT) 聚集能力降低許多,並可用於抑制人類降鈣素纖維的形成。
    本研究基於DM hCT的序列,我們希望可以藉由拆解其片段來研究其對於人類降鈣素的抑制行為,希望可以對人類降鈣素抑制劑的設計有所幫助。由於通常認為C端不涉及聚集機制,因此我們設計4個C端截短的DM hCT變異體 (DM 1-18、DM 1-22、DM 8-22 和 DM 8-25) ,用以作進一步研究。經由硫黃素T螢光測定實驗中我們發現了四個截短的變異體與DM hCT抑制效果有所差異,爾後並使用圓二色性光譜儀測量了它們形成α-螺旋構象的傾向程度,跟抑制效果比對之後發現,α-螺旋構象對於抑制人類降鈣素聚集是有一定的重要性。DM 1-22為僅次於DM hCT最佳的抑制劑。

    Irreversible aggregation greatly limits bioavailability and therapeutic activity of peptide-based drugs, so it is highly difficult to effectively inhibit peptide aggregation. Human calcitonin (hCT) is a 32-residue peptide hormone that is secreted by the parafollicular cells (C-cell) in the thyroid. hCT can regulate blood calcium levels and maintain bone formation, thus it can be used as a treatment of metabolic bone diseases, such as osteoporosis and Paget's disease. However, hCT has a high propensity to form amyloid fibrils which may reduce its original function and limit pharmaceutical potential. Salmon calcitonin (sCT) is the replacement of hCT as a widely therapeutic agent due to its higher bioactivity and lower propensity to aggregation. Unfortunately, sCT has low sequence identity with hCT (differing from hCT in 16 of the 32 amino acids) which lead to severe side effects including anorexia, vomiting, and immune reactions in clinical therapy. It has been reported that mutation of hCT can convert its aggregation propensity. In previous study, we demonstrate that a double-mutated hCT (Y12L N17H hCT, DM hCT) has much lower ability to form amyloid and can be used to inhibit hCT amyloid formation.
    Based on performance of DM hCT, we hope to understand its inhibitory behavior on hCT aggregation. We synthesize its truncated forms (DM 1-18, DM 1-22, DM 8-22, and DM 8-25) by removing C-terminal residues, and conducted further investigation using these peptide fragments. From thioflavin T fluorescence assay, we found that four truncated variants and DM hCT have different extents in self-assembly and inhibitory effect on hCT fibrillization. By using circular dichroism, we measured their propensity in forming α-helix conformation and found that formation of α-helix might be important to the inhibitory effect of DM hCT. DM 1-22 is a peptide fragment which can suppress hCT aggregation although efficiency is still less than DM hCT.

    第一章 緒論 1 1-1類澱粉蛋白病變與相關疾病 1 1-2 類澱粉蛋白摺疊機制與結構 3 1-3降鈣素與其生理功能 6 1-4人類降鈣素 (human calcitonin, hCT) 聚集 8 1-5影響hCT聚集的關鍵胺基酸 12 1-6 研究動機 16 第二章 實驗材料與方法 17 2-1實驗材料與設備 17 2-2胜肽合成純化與鑑定 19 2-3 胜肽樣品實驗前處理與配製 26 2-4 硫磺素T螢光測定 27 2-5 穿透式電子顯微鏡 29 2-6 圓偏光二色性光譜 31 第三章 結果與討論 34 3-1人類降鈣素與變異體的純化與鑑定 34 3-2 變異體自身聚性分析 42 3-3 變異體對hCT聚集的影響 44 3-4 TFE誘導變異體的構象改變 46 3-5 DMPG磷脂誘導變異體的構象改變 49 3-6 DM 1-22對hCT聚集的影響 51 3-7 驗證helix構形對抑制hCT聚集的重要性 52 第四章 結論 54 參考資料 55

    1. Siddiqi, M. K.; Majid, N.; Malik, S.; Alam, P.; Khan, R. H., Amyloid oligomers, protofibrils and fibrils. Macromolecular protein complexes II: Structure and Function 2019, 471-503.
    2. Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S.-i.; Merlini, G.; Saraiva, M. J.; Westermark, P., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23 (4), 209-213.
    3. Dobson, C. M., Protein misfolding, evolution and disease. Trends in biochemical sciences 1999, 24 (9), 329-332.
    4. Goedert, M., Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015, 349 (6248), 1255555.
    5. Antony, P. M.; Diederich, N. J.; Krüger, R.; Balling, R., The hallmarks of P arkinson's disease. The FEBS journal 2013, 280 (23), 5981-5993.
    6. Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiological reviews 2011, 91 (3), 795-826.
    7. Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. International journal of molecular sciences 2012, 13 (3), 3038-3072.
    8. Harrison, R.; Sharpe, P.; Singh, Y.; Fairlie, D., Amyloid peptides and proteins in review. Reviews of physiology, biochemistry and pharmacology 2007, 1-77.
    9. Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure–activity relationship of amyloid fibrils. FEBS letters 2009, 583 (16), 2610-2617.
    10. Au, D. F.; Ostrovsky, D.; Fu, R.; Vugmeyster, L., Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. Journal of biological chemistry 2019, 294 (15), 5840-5853.
    11. Tuttle, M. D.; Comellas, G.; Nieuwkoop, A. J.; Covell, D. J.; Berthold, D. A.; Kloepper, K. D.; Courtney, J. M.; Kim, J. K.; Barclay, A. M.; Kendall, A., Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature structural & molecular biology 2016, 23 (5), 409-415.
    12. Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding. Chemical physics letters 1999, 314 (1-2), 141-151.
    13. Bemporad, F.; Taddei, N.; Stefani, M.; Chiti, F., Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein science 2006, 15 (4), 862-870.
    14. Xi, W.-H.; Wei, G.-H., Amyloid-β peptide aggregation and the influence of carbon nanoparticles. Chinese Physics B 2015, 25 (1), 018704.
    15. Naot, D.; Cornish, J., The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone 2008, 43 (5), 813-818.
    16. Sexton, P.; Findlay, D.; Martin, T., Calcitonin. Current medicinal chemistry 1999, 6 (11), 1067-1093.
    17. Pondel, M., Calcitonin and calcitonin receptors: bone and beyond. International journal of experimental pathology 2000, 81 (6), 405-422.
    18. Austin, L. A.; Heath III, H., Calcitonin: physiology and pathophysiology. New england journal of medicine 1981, 304 (5), 269-278.
    19. Brew, K.; Castellino, F. J.; Vanaman, T. C.; Hill, R. L., The complete amino acid sequence of bovine α-lactalbumin. Journal of biological chemistry 1970, 245 (17), 4570-4582.
    20. Peel, N., Bone remodelling and disorders of bone metabolism. Surgery (Oxford) 2009, 27 (2), 70-74.
    21. Nicholson, G.; Moseley, J.; Sexton, P.; Mendelsohn, F.; Martin, T., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. The journal of clinical investigation 1986, 78 (2), 355-360.
    22. Stenbeck, G. In Formation and function of the ruffled border in osteoclasts, Seminars in cell & developmental biology, Elsevier: 2002; pp 285-292.
    23. Numerical simulation of bome fracture healing. http://numericalhealing.weebly.com/glossary.html(2022/07).
    24. Ainola, M., Pannus invasion into cartilage and bone in rheumatoid arthritis. 2009.
    25. Arvinte, T.; Cudd, A.; Drake, A., The structure and mechanism of formation of human calcitonin fibrils. Journal of biological chemistry 1993, 268 (9), 6415-6422.
    26. Chesnut III, C. H.; Silverman, S.; Andriano, K.; Genant, H.; Gimona, A.; Harris, S.; Kiel, D.; LeBoff, M.; Maricic, M.; Miller, P., A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. The American journal of medicine 2000, 109 (4), 267-276.
    27. Kanaori, K.; Nosaka, A. Y., Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy. Biochemistry 1995, 34 (38), 12138-12143.
    28. Kamgar‐Parsi, K.; Tolchard, J.; Habenstein, B.; Loquet, A.; Naito, A.; Ramamoorthy, A., Structural biology of calcitonin: from aqueous therapeutic properties to amyloid aggregation. Israel journal of chemistry 2017, 57 (7-8), 634-650.
    29. Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. Journal of Biological Chemistry 2002, 277 (38), 35475-35480.
    30. Andreotti, G.; Vitale, R. M.; Avidan-Shpalter, C.; Amodeo, P.; Gazit, E.; Motta, A., Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. Journal of biological chemistry 2011, 286 (4), 2707-2718.
    31. Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; De La Paz, M. L.; Martins, I. C.; Reumers, J.; Morris, K. L.; Copland, A.; Serpell, L.; Serrano, L., Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature methods 2010, 7 (3), 237-242.
    32. Chen, Y.-T.; Hu, K.-W.; Huang, B.-J.; Lai, C.-H.; Tu, L.-H., Inhibiting human calcitonin fibril formation with its most relevant aggregation-resistant analog. The journal of physical chemistry B 2019, 123 (48), 10171-10180.
    33. Fernandez-Escamilla, A.-M.; Rousseau, F.; Schymkowitz, J.; Serrano, L., Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature biotechnology 2004, 22 (10), 1302-1306.
    34. Thompson, M. J.; Sievers, S. A.; Karanicolas, J.; Ivanova, M. I.; Baker, D.; Eisenberg, D., The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the national academy of sciences 2006, 103 (11), 4074-4078.
    35. Tsolis, A. C.; Papandreou, N. C.; Iconomidou, V. A.; Hamodrakas, S. J., A consensus method for the prediction of ‘aggregation-prone’peptides in globular proteins. PloS one 2013, 8 (1), e54175.
    36. http://www.milli-q.com.tw/blog/detail/e6d83700-6080-451d-bc56-81b4973b9e56?pageno=2(2022/07).
    37. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-proteins and proteomics 2010, 1804 (7), 1405-1412.
    38. Luo, P.; Baldwin, R. L., Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997, 36 (27), 8413-8421.
    39. Parrish Jr, J. R.; Blout, E. R., Spectroscopic studies of random chain and α‐helical polypeptides in hexafluoroisopropanol. Biopolymers: original research on biomolecules 1971, 10 (9), 1491-1512.
    40. Epand, R. F.; Orlowski, R. C.; Epand, R. M., The biological potency of a series of analogues of human calcitonin correlates with their interactions with phospholipids. Peptide Science: Original research on biomolecules 2004, 76 (3), 258-265.
    41. BeStSel. https://bestsel.elte.hu/index.php(2022/07).
    42. Micsonai, A.; Bulyáki, É.; Kardos, J., BeStSel: from secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. In structural genomics, Springer: 2021; pp 175-189.
    43. Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic acids research 2018, 46 (W1), W315-W322.
    44. 林易弘博士 同步輻射圓二色光譜核心設施 (BL04C) 與實驗技術. https://www.nsrrc.org.tw/NsrrcWebSystem/UPLOADS/CHINESE/PUBLISH_BRIEF/95/TLS%E5%AF%A6%E9%A9%97%E8%A8%AD%E6%96%BD.pdf(2022/07).
    45. Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-proteins and proteomics 2014, 1844 (12), 2331-2337.
    46. Andreotti, G.; Méndez, B. L.; Amodeo, P.; Morelli, M. A. C.; Nakamuta, H.; Motta, A., Structural determinants of salmon calcitonin bioactivity: the role of the Leu-based amphipathic α-helix. Journal of biological chemistry 2006, 281 (34), 24193-24203.
    47. Kawashima, H.; Katayama, M.; Yoshida, R.; Akaji, K.; Asano, A.; Doi, M., A dimer model of human calcitonin13‐32 forms an α‐helical structure and robustly aggregates in 50% aqueous 2, 2, 2‐trifluoroethanol solution. Journal of peptide science 2016, 22 (7), 480-484.
    48. Epand, R. M.; Epand, R. F.; Orlowski, R. C.; Seyler, J. K.; Colescott, R. L., Conformational flexibility and biological activity of salmon calcitonin. Biochemistry 1986, 25 (8), 1964-1968.
    49. Wang, S. S.-S.; Good, T. A.; Rymer, D. L., The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. The international journal of biochemistry & cell biology 2005, 37 (8), 1656-1669.

    下載圖示
    QR CODE