簡易檢索 / 詳目顯示

研究生: 周子正
Chou, Tzu-Cheng
論文名稱: 三電力源電動車之主動式先進能量管理與平台實作驗證
Design and Experimental Verification of an Active Energy Managment Module for a Three-Energy-Source Electric Vehicle
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 多能源電動車能量管理最佳化理論鋰電池超級電容燃料電池系統整合
英文關鍵詞: Multi Electric Vehicle, Energy Management, Optimization, Lithium Battery, Super-Capacitor, Fuel Cell, System Integration
DOI URL: https://doi.org/10.6345/NTNU202203002
論文種類: 學術論文
相關次數: 點閱:74下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為一電動車之多電源系統最佳化能量管理與多能源平台實做驗證之研究。結合不同電力源之特性,找尋最佳化之能量管理策略,以解決目前電動車續航力不足、充電時間過長、電池循環壽命不高等問題。本研究可分為三個部分: (1)最佳化能量管理控制技術、(2)多能源主動式能量分配系統、 (3)多能源電動車機電整合技術與系統驗證平台。
    本研究主要選定三種電力源進行能量分配與控制管理,分別為:燃料電池、超級電容、鋰電池三種電力源。首先透過全域搜尋法則(Global Search Algorithm)分析出最佳化參數,作為最佳化控制策略調控之依據。其中以鋰電池為主要之電力來源;超級電容作為需求功率大時提供瞬間大電流的輔助,如此可減少鋰電池之損害並提高電池壽命;燃料電池則作為延距(增程)之能量源,主要用於發電提供給其他電池回充,增加續航力的同時亦可當作一輔助電力源。最後透過最佳化能量管理技術,分為四大模式:純電動模式(EV)、混合模式(Hybrid)、延距模式(RE)及超級電容輔助模式(SC-Power Assist)。
    本研究架構的配置包含上述三種電池外,亦有一邏輯控制器用以分析各電池狀態、不同行車型態之負載,藉此找出最佳化能量控制策略。另外在各電力源輸入端及輸出端皆搭載一塊自行設計之主動式能量分配電路板,用以接收由邏輯控制器回傳之參數訊號,進而調控各電力源之限流值並切換充放電模式,以達到多能源最佳化控制之目的。其中電路板包含一直流/直流轉換器(DC/DC converter)用於調控限制電流值、一個電阻用於控制輸出電壓、十二顆電容用以濾波並抵銷主動式電能分配系統動態響應速度不足之問題,並透過模組化製程以減少元件誤差,使得轉換效率可達94.6%以上。
    最終結合最佳化能量管理控制技術與多能源主動式能量分配系統,在軟硬體整合的應用下,建置一多能源電動車系統驗證平台。可模擬不同之行車型態,使得各電池無論是處在不同的狀況(SOC值)或是不同的負載(行車型態)下,皆可即時調控電流、切換模式並找出最佳的切換點,讓各電池保持在最佳操作狀態。相較於傳統電動車,更減少耗能並提升續航力,改善目前電動車發展所遇瓶頸。

    This research aims at developing an active energy management system for an experimental platform of the multi-energy-source electric vehicle (EV). The main purposes are to deal with the shortages of long charging time, short battery life cycles, and insufficient mileage of EVs. Hence, this research were separated into three segments: (1)optimal energy management control technologies, (2) active power distribution hardware, and (3) performance verification on an experimental platform.
    The selected green energy sources for EVs are fuel cells, supercapacitors and lithium batteries. By a global search method, the optimal control parameters were derived. The fuel cell were determined to be the range extension source, the batteries were the main energy provider, while the supercapacitors was the high-power-assist device. The energy management was with four modes: EV mode, hybrid mode, range-extension (RE) mode, and the supercapacitor-power assist mode.
    For the active power distribution hardware, a self-designed control board was integrated at the input and (or) output of each energy source. It consists of a DC/DC converter to regulate the output current (power), a variable resistance to control the commanded voltage for the regulated current, and twelve electric capacitors for the current filter as well as for the compensation of slow dynamics of IC circuit.
    The energy management control was coded on the Matlab/Simulink environment, and was consequently downloaded to a rapid-prototyping controller, where the inputs are the traction motor power,lithium batteries (SOC),supercapacitors(SOC),residual hydrogen content and the outputs are the regulated current commands of three energy sources. Experimental results show that under various battery state-of-charge (SOC), and time-variant outload, the active power module provide the proper energy management online. The implementation on a real EV will be conducted in the future.

    目 次 摘要 i Abstract ii 目 次 iii 表 次 v 圖 次 vi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 論文架構 7 1.6 文獻回顧 8 第二章 三電力源電動車之架構建立與系統整合 15 2.1 系統模型架構 15 2.2 整車系統動態模型 16 2.3 三電力源控制策略 18 2.4 控制系統整合與即時操控驗證 22 2.4.1 定義控制器基本輸入輸出I/O埠及通訊模組協定 22 2.4.2 CAN的輸出端 26 2.4.3 CAN的接收端 26 2.4.4 最佳化控制端 27 2.4.5 電流(輸出/回充)切換 28 2.4.6 I2C訊號轉換端 29 2.4.7 啟動需求控制策略之設計與改善 30 第三章 三電力源之主動式電能分配系統與平台實作驗證 33 3.1 直流/直流電流轉換器規格介紹 33 3.2 主動式電力分配系統建立與電路設計 34 3.2.1 外部控制電路設計 34 3.2.2 直流/直流轉換器電路板功能元件更新 39 3.2.3 主動式電力分配系統模組標準化 40 3.2.4 主動式電力分配系統之硬體改善設計 41 3.3 多能源電動車之主動式電能分配平台架構 43 3.4 硬體嵌入式模擬平台設計與穩態測試 48 3.5 多能源系統機電整合設計與實作 50 3.6 人機介面建立與整合 52 3.6.1 系統人機介面-使用者端 52 第四章 平台實測結果與討論 53 4.1 單一主動式電力分配系統驗證 53 4.2 電能最佳化模式切換驗證平台之實測與驗證 56 4.2.1 操作模式即時模擬 56 4.2.2 硬體嵌入式平台之模式切換驗證 63 4.2.3 實車平台之動態操作模式驗證 66 4.3 多能源系統之主動式能量管理系統平台測試 70 4.3.1 定速巡航測試 70 4.3.2 動態負載測試 71 4.3.3 多能源平台整合回充測試 72 4.4 燃料電池對超級電容回充測試 74 4.5 燃料電池對鋰電池回充測試 75 第五章 結論 77 5.1 結論 77 5.2 未來工作 78 參考文獻 79

    參考文獻
    [1] Gallagher KS, Muehlegger E (2011), “Giving green to get green Incentives and consumer adoption of hybrid vehicle technology,” J. of Environmental Economics and Management, Vol. 61, pp. 1-15.
    [2] Tesla Model S Crowned 2013 World Green Car
    [2] Lukic SM, Emadi A (2004), “Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,” IEEE Trans. Veh. Tech., Vol. 53 (2), pp. 385-389.
    [3] Huang KD, Tzeng SC, Chang WC, “Energy-saving hybrid vehicle using a pneumatic-power system,” Applied Energy, Vol. 81, (2005) pp. 1-18.
    [4] Chung CT, Hung, YH (2015), “Performance and energy management of a novel full hybrid electric powertrain system”, Energy, Vol. 89, pp.1-11.
    [5] Onat NC, Murat Kucukvar M, Omer Tatari O (2015), “Conventional, hybrid, plug-in hybrid or electric vehicles State-based comparative carbon and energy footprint analysis in the United States,” Applied Energy, Vol. 150, pp.36-49.
    [6] Hung, YH, Chien-Hsun Wu, CH (2015), “A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs, Applied Energy, 139, pp.260-271.
    [7] Hung YH, Wu CH (2012), “An integrated optimization approach for a hybrid energy system in electric vehicles”, Applied Energy, Vol.98, pp.479-490.
    [8] Yoo H, Sul SK, Park Y, Jeong J (2008), “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans Industry, Vol. 44, pp.108-114.
    [9] Tang Y, Yuan W, Pan Ma, Wan Z (2011), “Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application,” Applied Energy, Vol.88, pp.68-76.
    [10] Thounthong P, Raël S, Davat B (2011), “Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle,” J Power Sources, Vol.158, pp.806-814.
    [11] Thounthong P, Rael PS, Davat B (2009), “Energy management of fuel cell/battery/supercapactitor hybrid power source for vehicle applications,” J Power Sources, Vol.193, pp.376-385.
    [12] Boyali, A., Demirci, M., Guvenc L., Tur, O., Ucarol, H., Kiray, B., Ozatay E. (2006), “Modeling and control of a four wheel drive parallel hybrid electric vehicle,” Proc. of the 2006 IEEE International Conference on Control Application, pp. 155-162.
    [13] Shalini Rodrigues, N. Munichandraiah, A.K. Shukla, “A review of state-of-charge indication of batteries by means of a.c. impedance measurements,"Journal of Power Sources, Vol.87, August 4, pp. 12-20, 1999.
    [14] Jossen A, “Fundamentals of battery dynamics,"Journal of Power Sources, Vol.154, December 1, pp. 530-538 , 2005.
    [15] Huet F, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries,"Journal of Power Sources, Vol.70, May 19, pp. 59-69 , 1998.
    [16] Pesaran A.A., Keyser M. Keyser,“Thermal Characteristics of Selected EV and HEV Batteries,”Annual Battery Conference, Long Beach, California, January 9-12, 2001.
    [17] Gomez J., Nelson R., Kalu E.E.,Weatherspoon M.H.,Zheng J.P. , “Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects,”Journal of Power and Energy, vol.196, January 15, pp. 4826-4831 , 2011.
    [18] Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. “Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power Sources, Vol.158, July 14, pp. 535–542 , 2006.
    [19] Hong J-S, Maleki H, Al Hallaj S, Redey L, Selman J, “Electrochemical calorimetric studies of lithium-ion cells, ” Journal of The Electrochemical Society, Vol.150, November 7, pp. 1489-1501 , 1997.
    [20] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment and Application Second Edition , 2005.
    [21] Nguyen Truong Thinh, Nguyen Ngoc Phuong, Tuong Phuoc Tho, “ac impedance based state of charge dynamic modeling of a LiFe4 battery for hybrid electric vehicle applications,” Journal of Engineering Technology and Education, The 2012 International Conference on Green Technology and Sustainable Development.
    [22] Liye Wang, Lifang Wang, Chenglin Liao, “Research on improved EKF algorithm applied on estimate EV battery SOC,” IEEE, Power and Energy Engineering Conference (APPEEC), pp. 1-4 , 2010.
    [23] Min Chen, Rincon-Mora,“Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE, Transactions on Energy Conversion, Vol.21, June 5, pp. 504-511 , 2006.
    [24] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M.Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” Journal of Power Sources, Vol.74, August 1, pp. 219-227 , 1998.
    [25] C. R. Pals and J. Newman, “Thermal Modeling of the Lithium Polymer Battery: Temperature Profiles in a Cell Stack,” Journal of The Electrochemical Society, Vol.142, May 31, pp. 3282-3288 , 1995.
    [26] Kim, M.-J. and H. Peng,“Power management and design optimization of fuel cell/battery hybrid vehicles .”Journal of power sources 165(2): 819-832.
    [27] Hung, Y.-H. and C.-H. Wu,“An integrated optimization approach for a hybrid energy system in electric vehicles.”Applied Energy 98: 479-490, 2012.
    [28] Hung, Y.-H. and C.-H. Wu,“A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs.”Applied Energy 139: 260-271,2015.
    [29] S.G.Wirasingha and A. Emadi, “Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles.”Vehicular Technology, IEEE Transactions on, vol. 60,pp.111-122, 2011.
    [30] Delprat, S., et al.“Optimal control of a parallel powertrain: from global optimization to real time control strategy.”Vehicular Technology Conference, VTC Spring 2002. IEEE 55th, IEEE, 2002.
    [31] S.G.Wirasingha and A. Emadi, “Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles.”Vehicular Technology, IEEE Transactions on, vol. 60,pp.111-122, 2011.
    [32] 廖伯霖,"電動車之多電源系統建模與最佳化能量管理暨模式切換時機效益評估”,國立臺灣師範大學,碩士學位論文,104年6月。

    下載圖示
    QR CODE