簡易檢索 / 詳目顯示

研究生: 張雅淇
Chang, Ya-Chi
論文名稱: 距離調控式奈米銀增強螢光的感測機制應用於紙片型光學感測器之研製
Novel Gas-Sensing Mechanism of Distance-Modulation Fluorescence Enhancement Employing Silver Nanoparticles on a Paper-Based Optical Sensor
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 劉茂煌
Liu, Mao-Huang
林震煌
Lin, Cheng-Huang
呂家榮
Lu, Chia-Jung
口試日期: 2021/06/29
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: MPC材料局部表面電漿共振金屬增強螢光效應揮發性有機化合物
英文關鍵詞: MPC material, Localized Surface Plasmon Resonance, Metal Enhance Fluorescence, Volatile Organic Compounds
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200491
論文種類: 學術論文
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用化學合成法將市售的水相螢光分子轉相成可溶於二氯甲烷的有機相螢光分子,並以奈米金屬增強螢光效應的原理為基礎,於螢光材料中混入有機單層分子膜包覆的奈米銀團簇,最後做成以螢光反應來偵測有機氣體的紙片型感測器。本研究使用市售之綠光感測器搭配雙低通濾波電路所組成的微小化感測器,與光譜儀相比,不僅大幅地降低實驗成本,對於有機氣體偵測的螢光訊號反應也得到有效的放大。為優化實驗條件,本研究做了三種影響因素的比較,分別選用不同碳鏈長度的硫醇來包覆奈米銀粒子、不同螢光反射底板、調整奈米銀與螢光的混合比例,接著將具有最佳化條件的組合,用於偵測8種不同官能基的有機氣體,結果顯示螢光訊號反應有良好的穩定性與可逆性,線性迴歸係數大於0.99,且實驗證實,混入有機相奈米銀粒子,可以有效提升有機氣體偵測的靈敏度,偵測極限值介於11.4 ppm(butanol)到346.8 ppm(octane、toluene)之間。透過作用力的分析,了解到有機氣體的極性或氫鍵等特性會影響螢光反應,也從octane等低極性氣體的測試中證實,螢光反應確實來自於螢光團基與奈米銀粒子之間的距離改變。

    This research reports a novel paper-based optical device as a gas detector for volatile organic compounds(VOCs). This gas-sensing mechanism is based on the Metal Enhanced Fluorescence(MEF)effect. We successfully synthesized an organic fluorescent molecule which can be mixed with a monolayer protected silver nano-cluster(MPC). In this work, we combined a green-color sensor and a dual low-pass filter circuit into a miniaturized fluorescence sensor. Compared with a spectrometer, our sensor not only greatly reduces the experimental cost, but also effectively amplifies the fluorescence signal response for organic gas detection. In order to optimize the experimental conditions, this study made a comparison of three influencing factors, which are: the selection of thiols with different carbon chain lengths to protect silver nanoparticles, different fluorescent reflective substrates to enhance the signal strength, and adjusting the mixing ratio of silver nanoparticles to fluorescents. Next, we chose the optimized conditions of the material, and used it to detect 8 kinds of organic gases with different functional groups. These results show that the fluorescent signal reaction has good stability, reversibility, and a statistically significant linear relationship.The detection limit is between 11.4 ppm (butanol) and 346.8 ppm (octane, toluene). By analyzing the intermolecular force, we found that the polarity and hydrogen bond of the organic gas will affect the fluorescence reaction. It’s also confirmed from the test of the low-polarity gas octane, that the fluorescence reaction does indeed result from the change in the distance between the fluorophore group and the silver nanoparticle.

    第一章 緒論 1 第一節 研究背景 1 第二節 奈米材料 2 第三節 表面電漿共振 8 第四節 金屬增強螢光效應 13 第二章 實驗部分 26 第一節 實驗藥品、器材與儀器設備 26 第二節 奈米銀粒子與螢光複合材料的製備 32 第三節 奈米銀粒子與螢光複合材料感測器製作流程 36 第四節 實驗架構 37 第五節 光譜儀感測系統架設 38 第六節 微小化螢光感測系統架設 41 第三章 實驗結果與討論 46 第一節 奈米銀粒子與螢光複合材料相關分析 46 第二節 不同碳鏈長度奈米銀與螢光混合溶液之螢光強度分析 55 第三節 自組裝螢光感測器感測方式分析 57 第四節 自組裝螢光感測器感測訊號與再現性測試 58 第五節 不同光學感測器量測之比較 59 第六節 自組裝螢光感測最佳反應條件探討 62 第七節 螢光混入奈米銀前後氣體反應探討 68 第八節 氣體擴散機制探討 79 第四章 結論與未來展望 84 參考文獻 85

    1. Nakashima, H.; Nakajima, D.; Takagi, Y.; Goto, S., Journal of Health Science 2007, 53 (3), 311-319.
    2. Wohltjen, H.; Snow, A. W., Analytical Chemistry 1998, 70 (14), 2856-2859.
    3. 李冠儀, 國立臺灣師範大學化學系, 碩士論文, 2016.
    4. 黃國偉, 國立中正大學化學暨生物化學研究所, 碩士論文, 2007.
    5. 李言榮, 惲正中, 材料物理學概論, 五南圖書, 2003.
    6. 馬振基, 奈米材料科技原理與應用, 全華科技圖書, 2005. .
    7. 鄭嘉升, 天主教輔仁大學, 碩士論文, 2006.
    8. Pollack, H. W., Materials science and metallurgy, 4th Edition, Pearson 1988.
    9. Kubo, R., Journal of the Physical Society of Japan 1962, 17(6), 975-986.
    10. 楊仲準, 物理雙月刊, 2010, 32(2), 119-125.
    11. Murphy, C. J.; Jana, N. R., Advanced Materials 2002, 14 (1), 80-82.
    12. Chen, Z.; Balankura, T.; Fichthorn, K. A.; Rioux, R. M., ACS Nano 2019, 13 (2), 1849-1860.
    13. Murshid, N.; Keogh, D.; Kitaev, V., Particle & Particle Systems Characterization 2014, 31 (2), 178-189.
    14. Brust, M.; Walker, M.; Bethell, D.; Shiffrin, D.; Whyman, R., Journal of the Chemical Society, Chemical Communications 1994, 801.
    15. Ritchie, R. H., Physical Review 1957, 106 (5), 874-881.
    16. 吳民耀; 劉威志, 物理雙月刊, 2006, 28(2), 486-496.
    17. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., MRS bulletin 2005, 30 (5), 368-375.
    18. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
    19. Jain, P. K.; El-Sayed, M. A., Nano Letters 2008, 8 (12), 4347-4352.
    20. Mie, G., Annalen der Physik 1908, 330 (3), 377-445.
    21. Skoog, D. A.; Holler F. J.; Crouch S. R., Principles of Intrumental Analysis, 7th Edition, Cengage Learning 2017.
    22. Zimmermann, J.; Zeug, A.; Röder, B., Physical Chemistry Chemical Physics 2003, 5 (14), 2964-2969.
    23. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD., Current Opinion in Biotechnology 2005, 16(1), 55-62.
    24. Aslan, K., Lakowicz, J.R., Szmacinski, H. et al., Journal of Fluorescence 2004, 14, 677–679.
    25. 蘇育政; 江惠華; 洪敏偉, 科儀新知, 2009, 69-76.
    26. Kwan, R. C.; Hon, P. Y.; Mak, W. C.; Law, L. Y.; Hu, J.; Renneberg R., Biosensors and Bioelectronics 2006, 21(7), 1101-6.
    27. Wang, Y.; Li, Z.; Li, H.; Vuki, M.; Xu, D.; Chen, H.-Y., Biosensors and Bioelectronics 2012, 32 (1), 76-81.
    28. Yun, B. J.; Kwon, J. E.; Lee, K.; Koh, W.-G., Sensors and Actuators B: Chemical 2019, 284, 140-147.
    29. Peak, S. M.; Watkins, A. N., ACS Applied Nano Materials 2020, 3 (10), 9813-9821.
    30. Gao, Y.; Wang, J.; Wang, W.; Zhao, T.; Cui, Y.; Liu, P.; Xu, S.; Luo, X., Analytical Chemistry 2021, 93 (4), 2480-2489.
    31. Yan, Y.; Sun, J.; Zhang, K.; Zhu, H.; Yu, H.; Sun, M.; Huang, D.; Wang, S., Analytical Chemistry 2015, 87 (4), 2087-93.
    32. Pacquiao, M. R.; de Luna, M. D. G.; Thongsai, N.; Kladsomboon, S.; Paoprasert, P., Applied Surface Science 2018, 453, 192-203.
    33. Ju, P.; Yang, H.; Jiang, L.; Li, M.; Yu, Y.; Zhang, E., Spectrochim Acta A Mol Biomol Spectrosc 2021, 246, 118962.
    34. 簡日昇, 國立臺灣師範大學化學系, 碩士論文, 2007.
    35. 陳鳳宜, 國立臺灣師範大學化學系, 碩士論文, 2012.
    36. Kim, D.; Joo, J.; Pan, Y.; Boarino, A.; Jun, Y. W.; Ahn, K. H.; Arkles, B.; Sailor, M. J., Angew Chem Int Ed Engl 2016, 55 (22), 6423-7.
    37. Kamat, P. V.; Barazzouk, S.; Hotchandani, S., Angewandte Chemie International Edition 2002, 41 (15), 2764-2767.
    38. Thomas, K. G.; Kamat, P. V., Accounts of Chemical Research 2003, 36 (12), 888-898.
    39. Abraham, M. H., Chemical Society Reviews 1993, 22 (2), 73-83.
    40. Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N., Sensors and Actuators B: Chemical 2001, 80, 216.
    41. Matsunaga, N.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Sensors and Actuators B: Chemical 2002, 83, 216.

    無法下載圖示 本全文未授權公開
    QR CODE