簡易檢索 / 詳目顯示

研究生: 陳柏維
Chen, Po-Wei
論文名稱: 低溫電漿處理之多晶氧化錫通道結構於薄膜電晶體及光偵測器之研究
Study on the Characteristics of Thin-Film Transistor and Photodetector Based on Plasma-Modified Polycrystalline Tin-Oxide Channels
指導教授: 程金保
Cheng, Chin-Pao
鄭淳護
Cheng, Chun-Hu
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 薄膜電晶體氧化錫電漿改質光感測器
英文關鍵詞: Thin Film Transistor, Tin Oxide, Plasma Treatment, Photodetector
DOI URL: https://doi.org/10.6345/NTNU202204420
論文種類: 學術論文
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用磁控濺鍍製作P型氧化亞錫通道層,並透過改變環境退火氣體、退火溫度和退火時間,來改善氧化亞錫通道層品質,以期得較佳的氧化亞錫通道特性。此最佳化後的P型氧化亞錫薄膜電晶體特性,其臨界電壓為-0.83 V,載子遷移率為5.4 cm2/Vs,開關電流比為1.24×104。為了進一步提升P型氧化亞錫薄膜電晶體特性,我們同步使用了低溫氟電漿來改質P型氧化亞錫薄膜品質,透過氟原子對氧化錫通道層進行缺陷修補。經實驗結果證明,與無氟電漿改質的電晶體特性相比,經過低溫氟電漿改質處理之氧化亞錫電晶體元件,其開關電流比,有效改善了1個多數量級以上,可達到7.7x105。另一方面,我們也使用了氧電漿改質氧化亞錫薄膜,探討不同電漿源氣體對氧化亞錫通道層的影響。經200瓦氧電漿改質條件下,可改變通道氧化亞錫中得錫氧比,得到一個富氧型的N型二氧化錫通道。其電晶體元件特性所量測而得的臨界電壓為-1.49 V,載子遷移率可高達30 cm2/Vs,且開關電流比為7.8x103。此外,我們也探討了氧化錫電晶體的照光特性,實驗結果也發現其光響應行為與通道極性有高度相關性。P型氧化亞錫薄膜電晶體在可見光紅、綠、藍三波長下具有明顯光電流響應行為,而N型二氧化錫薄膜電晶體則僅對短波長藍光有較明顯的反應。此高靈敏性且高選擇比的光響應特性,未來將有機會整合應用於光偵測器產品上。

    In this work, the low-temperature plasma treatment was employed to modify the polarity of tin-oxide (SnO) semiconductor and investigated the potential applications of SnO thin-film transistors. The intrinsic p-type SnO TFT showed a low threshold voltage of -0.81 V, a field-effect mobility of 5.4 cm2 V −1 s −1 , and on/off current ratio of 2.28×103. To further improve the performance of intrinsic TFT devices, the low-temperature fluorine plasma treatment was conducted on p-type SnO channel. Under a variety of experimental comparison, the p-type SnO TFT with fluorine plasma treatment showed the significant improvement on current ratio by at least one order of magnitude (7.7x105), which could be attributed to the passivation effect of fluorine atoms on SnO channel. We also investigate the oxygen plasma effect on intrinsic p-type SnO channel. After an appropriate oxygen plasma treatment, the p-type SnO channel transferred to be n-type one due to the increase of oxygen concentration. The optimal n-type SnO TFT exhibited a threshold voltage of -1.49 V, a high field-effect mobility of 30 cm2 V −1 s −1, and on/off current ratio of 7.8x103. Therefore, the channel modification engineering by simple plasma treatment could be useful for the fabrication of low-temperature electronics. Besides, the illumination test of visible light was also performed to evaluate the carrier response between n- and p-type tin-oxide channels. The current response of transistor dependent to bandgap of SnO channel (n- or p-type) and light wavelength showed the potential application of Photodetector.

    誌謝 i 摘要 ii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1前言 1 1.2薄膜電晶體簡介 1 1.2.1金屬氧化物薄膜電晶體(Metal oxide TFT)歷史 3 1.2.2金屬氧化薄膜電晶體發展 5 1.3 研究動機及目的 10 第二章 文獻回顧 13 2.1 二氧化錫(SnO2)材料特性 13 2.2 氧化亞錫(SnO)材料特性 14 2.3 P型氧化物半導體傳導機制 15 2.4 P型氧化亞錫薄膜電晶體 17 2.5 薄膜電晶體性能改善方法介紹 21 2.5.1 設計雙閘極結構改善薄膜電晶體特性 21 2.5.2 氧化物通道電漿改植工程 23 2.6 互補式氧化物薄膜電晶體 26 2.7 氧化物半導體照光機制及其性能探討 33 2.7.1 電阻式氧化物半導體感光機制 33 2.7.2 氧化物薄膜電晶體照光性能探討 35 第三章 實驗方法與步驟 38 3.1 實驗流程與規劃 38 3.2 N型及P型氧化錫薄膜電晶體製備 39 3.2.1 三道式薄膜電晶體製作流程(以P型通道製程為例) 39 3.2.2 多晶氧化錫通道改植工程 41 3.3 電性量測 41 3.4 照光量測 44 第四章 結果與討論 46 4.1 比較不同實驗參數下P型氧化亞錫薄膜電晶體之特性差異 46 4.1.1 不同氣體環境下退火對P型氧化亞錫元件特性的影響 46 4.1.2 不同時間退火對P型氧化亞錫元件特性的影響 48 4.1.3 比較通道層厚度與降低氧化層厚度對P型氧化亞錫元件特性的影響 50 4.1.4 退火溫度對P型氧化亞錫元件特性的影響 52 4.2 氟電漿表面改質對氧化亞錫通道層的影響 55 4.3 氧電漿表面改質對氧化亞錫通道層極性的影響 58 4.4 可見光對N型及P型氧化錫薄膜電晶體感測 61 第五章 結論與展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 67

    [1] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater., 24, 2945–2986, (2012)
    [2] P. K. Weimer, “The TFT a new thin-film transistor,” Proceeding of the IRE, 50, 1462-1469, (1962).
    [3] H.A. Klasens, and H. Koelmans, “A tin oxide field-effect transistor,” Solid State Electronics, 7,701-702, (1964)
    [4] G. F. Boesen , and J. E. Jacobs , “ZnO field-effect transistor,” Proceedings of the Institute of Electrical and Electronics Engineers, 56, 2094-2095, (1968)
    [5] P. G. LeComber, W. E. Spear, and A. Ghaith, “Amorphous silicon field-effect device and possible application,” Electron. Lett., 15, 179-181, (1979)
    [6] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and Poly-Si for AMOLED displays,” Journal of the Society for information display, 12, 367-371, (2004)
    [7] M. J. POWELL, “The Physics of Amorphous-Silicon Thin-Film Transistors ,” IEEE Trans. Electron Devices, 36, 2753-2763, (1989)
    [8] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, “ Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of micro crystallinity, ” Appl. Phys. Lett., 74, 1860, (1999)
    [9] S. W. Depp, A. Juliana, and B. G. Huth, “Polysilicon FET device for large area input/output application,” in IEDM Tech. Dig., 703-706, (1980)
    [10] T. Aoyama1, G. Kawachi1, N. Konishi1, T. Suzuki1, Y. Okajima and K. Miyata1, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing,” J. Electro chem. Soc., 136, 1169-1173, (1989)
    [11] Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low-Temperature Crystallization of Hydrogenated Amorphous Silicon Induced by Nickel Silicide Formation,” Japanese Journal of Applied Physics, 29, 2698 -2704, (1990)
    [12] T. Sameshima, M. Hara and S. Usui, “XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's,” Japanese Journal of Applied Physics, 28, 1789-1793, (1989)
    [13] R. Ishihara, W. C. Yeh, T. Hattori, and M. Matsumura, “Effect of Light Pulse Duration on Excimer-Laser Crystallization Characteristics of Silicon Thin Films,” Japanese Journal of Applied Physics, 34, 1759-1764, (1995)
    [14] S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., 17, 160-162, (1996)
    [15] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. A. Ono, T. Suzuki, K. Miyata, and H. Kawakami, “High Performance Low-Temperature Poly-Si n-Channel TFT’s for LCD ,”IEEE Transactions on Electron Devices, 36, 351-359, (1989)
    [16] P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes Jr., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett., 82 , 1117-1119 , (2003)
    [17] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, M. Yoshida, H. Ishi, and M. Kakegawa, “novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs,” Journal of the Society for Information Display, 15, 17-22, (2007)
    [18] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, 93, 1624-1630, (2003)
    [19] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432, 488-492, (2004)
    [20] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” J. Non-Cryst. Solids, 165, 198–200, (1996)
    [21] 葉永輝,主動式有機電激發光顯示器技術,電子與材料雜誌,23期,69-78,2004年
    [22] R. A. Street, “Thin-Film Transistors,” Adv. Mater., 21 , 2007-2022, (2009)
    [23] https://www.materialsnet.com.tw/DocView.aspx?id=24369
    [24] Y. Kuo and H. Nominanda, “Nonvolatile hydrogenated-amorphous-silicon thin-film-transistor memory devices,” Appl. Phys. Lett.,89, 173503, (2006)
    [25] Y. Kuo, “Thin Film Transistor Technology—Past, Present, and Future Electrochemical,” Society Interface, (2013)
    [26] H. Jeong, C. S. Kong, S. W. Chang, K. S. Park, S. G. Lee, Y. M. Ha, and J. Jang, “Temperature Sensor Made of Amorphous Indium–Gallium–Zinc Oxide TFTs,” Electron Device Lett., 34, 1569-1571, (2013)
    [27] H.S. Bae, and Seongil Im, “Ultraviolet detecting properties of ZnO-based thin film transistors,” Thin Solid Films, 469–470, 75–79, (2004)
    [28] Ingrid Graz, Martin Kaltenbrunner, Christoph Keplinger, Reinhard Schwödiauer, Siegfried Bauer, “Flexible ferroelectric field-effect transistor for large-area sensor skins and microphones,” Appl. Phys. Lett., 89, 073501, (2006)
    [29] Tadatsugu Minami, “Transparent conducting oxide semiconductors for transparent electrodes, ”Semiconductor Science and Technology, 20, 35-44, (2005)
    [30] Y. S. He, Joe C. Campbell, and Robert C. Murphy, “Electrical and optical characterization of Sb : SnO2,” Journal of Materials Research, 8, 3131-3134, (1993)
    [31] A. L. Dawar, and J. C. Joshi, “Semiconducting transparent thin films: their properties and applications” Journal of Materials Science, 19, 1-23, (1984)
    [32] Y. Shimizu, and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors” MRS Bulletin, 24, 18-24, (1999)
    [33] J. Pannetier and G. Denes, “Tin(II) oxide: structure refinement and thermal expansion,” Acta Cryst., B36, 2763-2765, (1980)
    [34] D. B. Granato, J. A. Caraveo-Frescas, H. N. Alshareef, and U. Schwingenschlogl “Enhancement of p-type mobility in tin monoxide by native defects,” Appl. Phys. Lett., 102, 212105, (2013)
    [35] H. Li, X. Huang and L. Chen, “Direct Imaging of the Passivating Film and Microstructure of Nanometer‐Scale SnO Anodes in Lithium Rechargeable Batteries,” Electro chem. Solid-State Lett., 1, 241-243, (1998)
    [36] Wendy S. Baker, Jeremy J. Pietron, Margaret E. Teliska, Peter J. Bouwman, David E. Ramaker, and Karen E. Swider-Lyons, “enhanced Oxygen Reduction Activity in Acid by Tin-Oxide Supported Au Nanoparticle Catalysts,” J. Electro chem. Soc., 153,A1702-A1707, (2006)
    [37] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi1, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono, “Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application,” Phys. Status Solidi A, 206, 2187–2191, (2009)
    [38] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “p -channel thin-film transistor using p -type oxide semiconductor, SnO,” Appl. Phys. Lett., 93, 032113, (2008)
    [39] .H.N. Lee, H.J. Kim, and C.K. Kim, “p-Channel Tin Monoxide Thin Film Transistor Fabricated by Vacuum Thermal Evaporation,” Japanese Journal of Applied Physics, 49, 020202, (2010)
    [40] E. Fortunato, R. Barros, P. Barquinha, and V. Figueiredo, “Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing,” Appl. Phys. Lett., 97, 052105, (2010)
    [41] C. W. Zhong, H. C. Lin, and K. C. Liu, “Improving Electrical Performances of p-Type SnO Thin-Film Transistors Using Double-Gated Structure,” IEEE Electron Device Lett., 36, (2015)
    [42] J. Park, J.K. Jeong, Y.G. Mo, and H.D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 , (2007)
    [43] S. Lee, S. Bang, J. Park, S. Park, W. Jeong and H. Jeon, “The effect of oxygen remote plasma treatment on ZnO TFTs fabricated by atomic layer deposition,” Phys. Status Solidi A , 207, 1845–1849, (2010)
    [44] A. Dindar, J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen “Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates,” Appl. Phys. Lett., 99, 172104, (2011)
    [45] I. C. Chiu, Y. S. Li ; M. S. Tu, and I. C. Cheng, “Complementary Oxide–Semiconductor-Based Circuits With n-Channel ZnO and p-Channel SnO Thin-Film Transistors,” IEEE Trans. Electron Devices, 35, 1263-1265, (2014)
    [46] H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits,” Appl. Phys. Lett., 97, 072111, (2010)
    [47] Pradipta K. Nayak, J. A. Caraveo-Frescas, Zhenwei Wang, M. N. Hedhili, Q. X. Wang, and H. N. Alshareef, “Thin Film Complementary Metal Oxide Semiconductor (CMOS) Device Using a Single-Step Deposition of the Channel Layer,” Scientific Reports, 4, 4672, (2014)
    [48] 陳一誠、劉旭楨,一氧化碳氣體感測技術,工業材料雜誌,227期,66-80,94年
    [49] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches, ” Adv. Mater., 14, (2002)
    [50] C. Soci , A. Zhang , B. Xiang , S. A. Dayeh , D. P. R. Aplin , J. Park , X. Y. Bao , Y. H. Lo , and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., 7, 1003–1009, (2007)
    [51] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett., 93, 112115, (2008)
    [52] Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, H. Nitta, M. Furuta1 and T. Hirao, “Photo-Leakage Current of Zinc Oxide Thin-Film Transistors,” Japanese Journal of Applied Physics ,49, 03CB03, (2010)
    [53] J. Yao, N. Xu, S. Deng, J. Chen, J. She, and H. P. Shieh, “Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy,” IEEE Trans. Electron Devices, 58, 1121-1126, (2011)
    [54] Z. W. Wang , Pradipta K. Nayak , Jesus A. Caraveo-Frescas , and Husam N. Alshareef, “Recent Developments in p-Type Oxide Semiconductor Materials and Devices,” Adv. Mater., 28, 3831–3892 , (2016)
    [55] Jesus A. Caraveo-Frescas, Pradipta K. Nayak, Hala A. Al-Jawhari, Danilo B. Granato, Udo Schwingenschlo¨ gl, and Husam N. Alshareef, “Record Mobility in Transparent p‑Type Tin Monoxide Films and Devices by Phase Engineering,” ACS Nano, 7, 5160–5167, (2013)
    [56] W. C. Wu, C. S. Lai1, S. C. Lee, M. W. Ma, T. S. Chao, J. C. Wang, C. W. Hsu, Pai. Chi. Chou, J. H. Chen, K. H. Kao, W.C. Lo, Tsung. Y. Lu, L. L. Tay, and N. Rowe, “Fluorinated HfO2 Gate Dielectrics Engineering for CMOS by pre- and post-CF4 Plasma Passivation,” IEDM, 1-4, (2008)

    下載圖示
    QR CODE