簡易檢索 / 詳目顯示

研究生: 楊宗翰
Yang, Zonghan
論文名稱: 金屬銅試劑催化串聯環化反應來合成多元稠合雜環化合物
Copper Catalyzed Cascade Cyclizations for the Synthesis of Fused-multiheterocycles
指導教授: 姚清發
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 265
中文關鍵詞: α-咔啉酮多元雜環化合物烏爾曼反應銅催化串聯環化反應
英文關鍵詞: multiheterocycles, ullmann reaction, copper-catalyzed, cascade cyclizations
DOI URL: https://doi.org/10.6345/NTNU202203633
論文種類: 學術論文
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩章節。第壹章先針對金屬銅催化串聯環化反應的
    定義做介紹,並回顧近年來各種類型串聯反應、銅催化耦合反應與金
    屬銅催化串聯環化反應的相關文獻。
    第貳章為目前對金屬銅催化串聯環化反應的研究結果與討論。本
    章節分為兩部份;第一部份為簡易且高效率方法合成出α-咔啉酮衍
    生物,反應利用N-苯甲基-2-碘苯甲醯胺類化合物與2-鹵苯乙腈在溫
    和條件下藉由烏爾曼型銅催化分子間C-C 鍵與分子內C-N 鍵耦合的
    串聯環化反應得到目標物。第二部份介紹合成出由多個雜環骨架所稠
    合而成的化合物,反應利用2-碘-N-(2-碘苯甲基)苯甲醯胺或 2-
    碘-N-(2-碘苯乙基)苯甲醯胺化合物與2-鹵苯乙腈藉由烏爾曼型銅
    催化分子間C-C 鍵與兩次分子內C-N 鍵耦合的串聯環化反應得到目
    標物。這兩種方法可以在溫和反應條件下進行,得到高產率的目標物
    且無副產物的生成。

    The contents of the present thesis are mainly divided into two chapters. The first chapter is the preface of the thesis which introduce the definition and literature review about types of cascade reaction, copper catalysis coupling reaction and copper-catalyzed cascade cyclization reactions.
    The second chapter is the results and discussion of the present work on copper-catalyzed cascade cyclizations. This chapter subdivided into two parts; The first part is a facile and efficient synthesis of α-carbolinone derivatives from the reaction between N-benzyl-2-iodobenzamide derivatives and 2-halo-benzyl cyanide via copper-catalyzed Ullmann type intermolecular C-C bond and intramolecular C-N bond couplings cascade cyclization under mild conditions. The second part of second chapter describes the synthesis of multi heterocyclic fused skeleton from the reaction between 2-iodo-N-(2-iodobenzyl)benzamide or 2-iodo-N-(2-iodophenethyl) benzamide derivatives and 2-halobenzyl cyanide via copper-catalyzed Ullmann type intermolecular C-C bonds and twice intramolecular C-N bonds couplings cascade cyclization. Both these two types of reactions worked under mild reaction conditions and furnished high yields of the desired products. Apart from these reactions devoid of side products.

    中文摘要……………………………………………………………I Abstract……………………………………………………………II 第壹章、前言 一、概述金屬銅催化串聯環化反應…………………………P. 01 1. 串聯環化反應………………………………………………P. 01 1-1. 親核性串聯反應………………………………………P. 02 1-2. 親電性串聯反應………………………………………P. 03 1-3. 自由基串聯反應………………………………………P. 04 1-4. 周環串聯反應…………………………………………P. 05 1-5. 過渡金屬催化串聯反應………………………………P. 06 2. 金屬銅催化…………………………………………………P. 08 2-1. 銅催化碳-碳鍵生成反應………………………………P. 09 2-2. 銅催化碳-氧鍵生成反應………………………………P. 12 2-3. 銅催化碳-氮鍵生成反應………………………………P. 14 2-4. 銅催化碳-硫鍵生成反應………………………………P. 15 2-5. 銅催化氮-硫鍵生成反應………………………………P. 17 3. 金屬銅催化串聯環化反應之文獻回顧……………………P. 18 二、研究動機……………………………………………………P. 21 第貳章、金屬銅催化串聯環化反應之結果與探討 第一部分、α-咔啉酮衍生物的合成……………………………P. 22 1. α-咔啉酮的介紹…………………………………………P. 22 2. 文獻回顧……………………………………………………P. 25 3. 研究目標……………………………………………………P. 26 4. 結果與討論…………………………………………………P. 27 4-1. 最佳化條件探討………………………………………P. 27 4-2. 化合物3a取代基效應的探討…………………………P. 33 4-3. 特殊取代基效應的探討………………………………P. 37 4-4. 反應機制探討…………………………………………P. 40 5. 結論………………………………………………………P. 41 第二部分、多元稠環化合物的合成……………………………P. 42 1. 天然物介紹………………………………………………P. 42 1-1. 異喹啉酮介紹………………………………………P. 42 1-2. 吲哚介紹……………………………………………P. 43 1-3. 喹唑啉介紹…………………………………………P. 44 1-4. 苯二氮䓬類介紹……………………………………P. 45 2. 研究目標…………………………………………………P. 47 3. 結果與討論………………………………………………P. 48 3-1. 化合物11a最佳化條件探討…………………………P. 49 3-2. 化合物15a最佳化條件探討…………………………P. 51 3-3. 化合物11取代基效應的探討………………………P. 52 3-4. 化合物15取代基效應的探討………………………P. 56 3-5. 反應機制……………………………………………P. 60 4. 結論…………………………………………………………P. 61 參考文獻……………………………………………………P. 62 實驗部份 分析儀器及基本實驗操作…………………………………P. 66 第一部分實驗步驟…………………………………………P. 67 第二部分實驗步驟…………………………………………P. 68 光譜資料……………………………………………………P. 69 1H-NMR及13C-NMR光譜附圖………………………………P. 102 單晶繞射X-Ray分析結構圖………………………………P. 190

    1.(a) Tietze, L. F.; Beifuss, U. Angew. Chem. Int. Ed. Engl. 1993, 32, 131-163.(b) Tietze, L.F. Chem. Rev. 1996, 96, 115-136.(c) Pellissier, H. Chem. Rev. 2013, 113, 442-524.(d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134-7186.
    2. Kourra, C.; Klotter, F.; Sladojevich, F.; Dixon, D. J. Org. Lett. 2012, 14, 1016-1019.
    3. Stark, L. M.; Pekari, K.; Sorensen, E. J. Proc. Natl. Acad. Sci. USA 2004, 101, 12064-12066.
    4. Theuissen, C.; Metayer, B.; Henry, N.; Compain., G.; Marrot, J.; Mingot, A. M.; Thibaudeau, S.; Evano, G. J. Am. Chem. Soc. 2014, 136, 12528-12531.
    5.D. W. C. MacMillan, L. E. Overman, L. D. Pennington, J. Am. Chem. Soc. 2001, 123, 9033-9044.
    6.G. Pattenden, M. A. Gonzalez, S. McCulloch, A. Walter, S. J. Woodhead, Proc. Natl. Acad. Sci. USA 2004, 101, 12024-12029.
    7.G. I. Elliot, J. Velcicky, H. Ishikawa, Y. Li, D. L. Boger. Angew. Chem. Int. Ed. 2006, 45, 620-622.
    8.(a) Zhang, Y.; Wu, G-z.; Agnel, G.; Negishi, E-i. J. Am. Chem. Soc. 1990, 112, 8590. (b)Negishi, E-i. Pure Appl. Chem. 1992, 64, 323.
    9. Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276-8277.
    10. Malacria, M. Chem. Rev. 1996, 96, 289-306.
    11. (a) Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174. (b) Ullmann, F. Ber. Dtsh. Chem. Ges. 1930, 36, 2382. (c) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691
    12. Zuercher, W. J; Scholl, M.; Grubbs, R. H J. Org. Chem. 1998, 63, 4291-4298.
    13. Beletskaya, I. P.; Cheprakov, A. V. Coordination Chemistry Reviews 248 (2004) 2337-2364.
    14. Borduas, N.; Powell, D. A. J. Org. Chem. 2008, 73, 7822-7825.
    15. (a) Lindley, J. Tetrahedron 1984, 40, 1433. (b) Hennessy, E. J.; Buchwald, S. L. Org. Lett., 2002, 4, 269-272. (c) Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469-3472.
    16. Li, Z.; Li, C. J. Org. Lett. 2004, 6, 4997-4999.
    17. Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Org. Lett. 2008, 10, 3203-3206.
    18. Yang, K.; Li, Z.; Wang, Z.; Yao, Z.; Jiang. S. Org. Lett. 2011, 13, 4340-4343.
    19. Wolter, W.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973-976.
    20. Niu, J.; Guo, P.; Kang, J.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2009, 74, 5075-5078.
    21. Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179-5183.
    22. Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581-584.
    23. Gao, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008, 73, 6864-6866.
    24. Wang, L.; Cai, S.; Liao, Q.; Xi, C. J. Org. Chem. 2011, 76, 3174-3180.
    25. (a) Sperotto, E.; Klink, G. P. M.; Vrie, J. G.; Koten, G. J. Org. Chem. 2008, 73, 5625–5628 (b) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548-9552.
    26. Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem. Int. Ed. 2010, 49, 1291-1294.
    27. (a) Wang, F.; Chen, C.; Deng, G.; Xi C. J. Org. Chem. 2012, 77, 4148-4151. (b) Wang, Z,; Kuninobu, Y.; Kanai, M. J. Org. Chem. 2013, 78, 7337-7342.
    28. (a) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274-1277. (b) Wen, L. R.; Jin, X. J.; Niu, X. D.; Li, M. J. Org. Chem. 2015, 80, 90-98. (c) Cai, Q.; Zhou, F.; Xu, T.; Fu, L.; Ding, K. Org. Lett. 2011, 13, 340-343. (d) Tang, J.; Xu, B.; Mao, X.; Yang, H.; Wang, X.; Lv, X. J. Org. Chem. 2015, 80, 11108-11114 (e) Gawande, S. D.; Kavala, V.; Zanwar, M. R.; Kuo, C. W.; Huang, W. C.; Kuo, T. S.; Huang, H. N.; He, C. H.; Yao, C. F.; Adv. Synth. Catal. 2014, 356, 2599-2608 (f) Kavala, V.; Wang, C. C.; Wang, Y. H.; Kuo, C. W.; Janreddy, D.; Huang, W. C.; Kuo, T. S.; He, C. H.; Chen, M. L.; Yao, C. F. Adv. Synth. Catal. 2014, 356, 2609-2626.
    29. (a) Nakao, Y.; Yeung, B. S.; Yoshida, W. Y.; Scheuer, P. J. J. Am. Chem. Soc. 1995, 117, 8271-8272. (b) Newhouse, T.; Lewis, C. A.; Baran, P. S. J. Am. Chem. Soc. 2009, 131, 6360-6361
    30. (a) Helbecque, N.; Moquin, C.; Bernier, J. L.; Morel, E.; Guyot, M.;Henichart, J. P. Cancer Biochem. Biophys. 1987, 9, 271-279. (b) Patty, C. M.; Guyot, M. Tetrahedron Lett. 1989, 45, 3445-3450. (c) Kim, J. S.; Kazuo, S. Y.; Furihata, K.; Hayakawa, Y.; Steo, H. Tetrahedron Lett.1997, 38, 3431-3434. (d) Cimanga, K.; Bruyne, T. D.; Pieters, L.; Vlietinck, A. J. J. Nat. Prod, 1997, 60, 688-691.
    31. (a)Jimenez, C.; Quinoa, E.; Adamczereski, M.; Hunter, L. M.; Crews, P. J. Org. Chem. 1991, 56, 3403-3410. (b) Ahmad, K.; Thomas, N. F.; Hadi, A. H. A.; Mukhtar, M. R.; Mohamad, K.; Nafiah, M. A.; Takeya, K.; Morita, H.; Litaudon, M.; Arai, H.; Awang, K. Chem. Pharm. Bull. 2010, 58, 1085. (c) Menta, E.; Pescalli, N.; Spinelli, S. Patent PCT Int. Appl. WO 2001009129 A2, 2001; Chem. Abstr. 2001, 134, 162922. (d) Regina, G. L.; Famiglini, V.; Passacantilli, S.; Pelliccia, S.; Punzi, P.; Silvestri, R. Synthesis 2014, 46, 2093-2097.
    32. (a) Sagitullin, R. S.; Kost, A. N.; Borisov, N. N. Chem. Heterocycl. Compd. 1970, 6,1127-1130. (b) Borisov, N. N.; Sagitullin, R. S.; Kost, A. N. Chem. Heterocycl. Compd. 1972, 8, 46-51. (c) Damavandi, S.; Sandaroos, R. Heterocycl. Commun. 2011, 17, 187-189. (d) Damavandi, S.; Sandaroos, R. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2015, 45, 1660-1663.
    33. (a) Jiao, J.; Zhang, X. R.; Chang, N. H.; Wang, J.; Wei, J. F.; Shi, X. Y.; Chen, Z. G. J. Org. Chem. 2011, 76, 1180-1183. (b) Shangjun, F. W.; Liao, C. Q.; Xi, C. J. Org. Chem. 2011, 76, 3174-3180. (c) Sun, J.; Liu, B.; Xu, B. RSC Adv., 2013, 3, 5824-5827.
    34. (a) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469-2472. (b) Butler, J. R.; Wang, C.; Bian, J.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 9956-9959.
    35. (a) Takahashi, H.; Wakamatsu, S.; Tabata, H.; Oshitari, T.; Harada, A.; Inoue, K.; Natsugari, H. Org. Lett. 2011, 13, 760-763. (b) Kenny, B.; Ballard, S.; Blagg, J.; FOX, D. J. Med. Chem. 1997, 40, 1293-1315. (c) Parmanik, C.; Bhumkar, R.; Karhade, G.; Khairnar, P.; Tripathy, N. K.; Gurjar, M. K. Org. Process Res. Dev. 2012, 16, 507-511.
    36. (a) Guo, S.; Tao, L.; Zhang, W.; Zhang, X.; Fan, X. J. Org. Chem. 2015, 80, 10955-10964. (b) Zhao, C. H.; Zhang, C. L.; Shi, J. J.; Hou, X. Y.; Feng, N.; Zhao, L. X. bioorg. med. chem. lett. 2015, 25, 4500-4504. (c) Giardin’a, D.; Martarelli, D.; Sagratini, G.; Angeli, P.; Ballinari, D.; Gulini, U.; Melchiorre, C.; Poggesi, E.; Pompei, P. J. Med. Chem. 2009, 52, 4951-4954. (d) Bolognesi, M, L.; Budriesi, R.; Chiarini, A.; Poggesi, E.; Leonardi, A.; Melchiorre, C. J. Med. Chem. 1998, 41, 4844-4853.
    37.(a) Alajarin, M.; Molina, P.; Andrada, P. S. J. Org. Chem. 1999, 64, 1121-1130.(b) McRobb, F, M.; Grosby, I, T.; Yuriev, E.; Lane, J, R.; Capuano, B. J. Med. Chem. 2012, 55, 1622-1634. (c) Manfra, O.; Craenenbroeck, K, V.; Skieterska, K.; Frimurer, T.; Schwartz, T, W.; Levy, F, O.; Andressen, K, W. ACS Chem. Neurosci. 2015, 6, 1206-1218. (d) Campiani, G.; Butini, S.; Fattorusso, C.; Iatalanotti, B.; Gemma, S.; Nacci, V.; Morelli, E.; Cagnotto, A.; Mereghetti, I.; Mennini, T.; Carli, M.; Minetti, P.; Cesare, M, A, D.; Mastroianni, D.; Scafetta, N.; Galletti, B.; Stasi, M, A.; Castorina, M.; Pacifici, L.; Vertechy, M.; Serio, S, D.; Ghirardi, O.; Tinti, O.; Carminati, P. J. Med. Chem. 2004, 47, 143-157. (e) Ng, W.; Kennar, R.; Uetrecht, J. Chem. Res. Toxicol. 2014, 27, 1104-1108. (f) Calcaterra, N, E.; Barrow, J, C. ACS Chem. Neurosci. 2014, 5, 253-260. (g) Takayama, T.; Umemiya, H.; Amada, H.; Yabuuchi, T.; Koami, T.; Shiozawa, F.; Oka, Y.; Takaoka, A.; Yamaguchi, A.; Endo, M.; Sato, M. Bioorg. Med. Chem. Lett. 2010, 20, 112-116. (h) Masurier, N.; Aruta, R.; Gaumet, V.; Denoyelle, S.; Moreau, E.; Lisowski, V.; Martinez, J.; Maillard, L. T. J. Org. Chem. 2012, 77, 3679-3685.

    無法下載圖示 本全文未授權公開
    QR CODE