簡易檢索 / 詳目顯示

研究生: 李翎潔
Lee, Ling-Chieh
論文名稱: 利用基質輔助雷射脫附/游離裝置瞭解雙醣分裂片段與功能性碳質材料的關聯
Understanding the Correlation between the Functional Carbonaceous Materials and Disaccharides Fragmentation by Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
指導教授: 鍾博文
Chung, Po-Wen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 79
中文關鍵詞: 中孔碳材吸附水解雙醣分裂片段基質輔助雷射脫附/游離裝置
英文關鍵詞: Mesoporous carbon material, Adsorption, Hydrolysis, Disaccharide, Fragment, MALDI
DOI URL: https://doi.org/10.6345/NTNU202202820
論文種類: 學術論文
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣類除了是身體主要的能量來源之外,在生物運行上也扮演很重要的腳色。例如醣蛋白是由蛋白質連接醣類而成,廣泛存在於細胞膜表面,目前研究認為在細胞膜上的醣蛋白有傳遞細胞間訊息的功能,也可以阻擋病毒、細菌入侵人體健康的細胞。然而到現在為止,還沒有一個系統化的方法鑑定醣類的結構和組成。為了解決醣類結構鑑定的問題,我們利用基質輔助雷射脫附/游離(MALDI)當游離源和修飾不同酸根的中孔洞碳材(MCN)當基質,試著去分析具有最簡單鍵結結構的雙醣。MALDI有高靈敏度,分析時間短,操作簡單等優點,且不需要在分析前先進行衍生化,是常見分析糖類的離子化方法。由於MALDI是一種軟離子化技術,只能得到完整分子的質譜信息,一般會使用二次質譜的方式得到離子片段,但MCN強大的光學吸收能力及能量傳遞能力可以使分析物得到足夠能量且產生離子碎片,改善傳統使用二次質譜得到離子片段的方法。
    我們已經證明利用MCN和具有酸性功能表面的MCN作為基質相較於傳統的有機基質2,5-二羥基苯甲酸(DHB)更適合研究雙醣的分裂片段,實驗結果顯示雙醣的分裂碎片也許會因為(1)MCN的酸性表面官能基催化水解醣類和(2)雙醣在碳質表面上的吸附能量會藉由CH-π相互作用而受到影響。我們希望透過以上兩種因素,分辨具有同分子量而有不同鍵結結構的雙醣。

    Not only does saccharide be the energy source, but also can it play an important role in the human body. For example, glycoprotein which composed of protein linked to saccharides is widely present on the surface of the cell membrane. It has been well studied and suggested that glycoprotein might have governed the function of intercellular information transferring, viruses blocking, and bacteria invading in human cells. However, there was not such a universal method to identify the structural and compositional of saccharides. Herein, to solve aforementioned problem, matrix-assisted laser desorption/ionization was as ion source and acid modified mesoporous carbon nanoparticles (MCN) were employed as matrice to analyze the disaccharide which consist of different orientation and structure. There are many well known advantages for MALDI, such as high sensitivity, short analysis time, simple operation and no derivatization prior to analysis, which lead to be a common method for the characterization of saccharide structure. The secondary mass spectrometry is mainly employed for understanding the fragmentation of the full saccharide molecular in MALDI owing to its limit of soft ionization. Nevertheless, MCN might have advantages of strong optical absorption and high energy transfer capability, which can assist to produce fragmentation of the saccharide simultaneously.
    Herein, we have demonstrated using functional MCN as matrice to investigate the characteristic fragments of disaccharides, in comparison with the conventional organic matrix of 2,5-dihydroxybenzoic acid (DHB). Experimental results suggest that the fragmentation might be influenced by (1)the hydrolysis of disaccharides from acidic functional surface of MCN and (2)the adsorption energetic of disaccharides on carbonaceous surface through CH-π interaction. Above all, we have discovered that disaccharides of the same molecular weight with different linkages can be possibly identified through different adsorption and hydrolysis phenomena.

    Content Chapter1 Introduction 1 1.1 Introduction of saccharide 1 1.1.1 The importance of saccharide 1 1.1.2 Composition of saccharide 3 1.1.3 Common saccharides analysis methods and dilemmas 5 1.2 Matrix-Assisted Laser Desorption/Ionization 6 1.2.1 Introduction of MALDI 6 1.2.2 Development and history of MALDI 6 1.2.3 The characteristics of the matrix 7 1.2.4 The mechanism of MALDI 9 1.2.5 MALDI improvements in low molecular weight 10 1.2.6 Identification of carbohydrate structure in MALDI 12 1.3 Mesoporous material 13 1.3.1 The advantages of mesoporous carbon materials in identifying carbohydrate structure 13 1.3.2 Introduction of mesoporous silica materials 14 1.3.3 Classified of surfactants for mesoporous silica materials 15 1.3.4 Synthetic mechanism of mesoporous materials 17 1.3.5 Introduction porous carbon material 18 1.4 Purpose of the study 20 Chapter2 Experimental 21 2.1 Chemical samples and reagents 21 Barium chloride 22 2.2 Sample preparation and treatment 23 2.2.1 Synthesis of Mesoporous Carbon Nanoparticles (MCN) 23 2.2.2 Modified functional group on Mesoporous Carbon Nanoparticles 25 2.2.3 Acid−base back-titration for functional MCNs48 26 2.2.4 Adsorption of disaccharide on mesoporos carbon material 27 2.2.5 Hydrolysis of disaccharide 27 2.2.6 Prepare the sample for MALDI-TOF MS 29 Chapter3 Results and discussion 30 3.1 Characterization of mesoporous carbon material 30 3.1.1 X-ray Diffraction (XRD) 30 3.1.2 Thermogravimetric analysis (TGA) 34 3.1.3 Nitrogen adsorption-desorption isotherm (BET) 35 3.1.4 Scanning Electron Microscope (SEM) 39 3.1.5 Fourier Transform Infrared (FTIR) 40 3.1.6 Ultraviolet–visible spectroscopy (UV-VIS) 42 3.2 MCN as matrix in MALDI-TOF MS 43 3.2.1 Compare traditional matrix with MCN in MALDI 43 3.2.2 MCN dispersion ability 45 3.2.3 Comparison of different concentrations of MCN matrix 47 3.2.4 Comparison of different functional group of the matrix 48 3.2.5 Produce fragment when using carbon material be matrix 54 3.2.6 Fragment of different linkage of disaccharide 55 3.3 The possibility of hydrolysis to produce fragment in MALDI 57 3.3.1 Hydrolysis of disaccharide 58 3.3.2 Catalytic hydrolysis of disaccharide 62 3.3.3 Different acidic matrix effect in MALDI 66 3.4 Adsorption ability 67 3.4.1 Adsorption capacity of different linkage disaccharide 67 3.4.2 Discussion on the adsorption capacity of energy transfer in MALDI 72 Chapter 4 Conclusion 73 Chapter 5 References 75

    1. Schnaar, R. L.; Freeze, H. H., A "Glyconutrient sham". Glycobiology 2008, 18 (9), 652-657.
    2. Westman, E. C., Is dietary carbohydrate essential for human nutrition? American Journal of Clinical Nutrition 2002, 75 (5), 951-953.
    3. Ho, C. S.; Lam, C. W.; Chan, M. H.; Cheung, R. C.; Law, L. K.; Lit, L. C.; Ng, K. F.; Suen, M. W.; Tai, H. L., Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev 2003, 24 (1), 3-12.
    4. Karas, M.; Hillenkamp, F., Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons. Analytical Chemistry 1988, 60 (20), 2299-2301.
    5. Posthumus, M. A.; Kistemaker, P. G.; Meuzelaar, H. L. C.; Tennoeverdebrauw, M. C., Laser Desorption-Mass Spectrometry of Polar Non-Volatile Bio-Organic Molecules. Analytical Chemistry 1978, 50 (7), 985-991.
    6. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988, 2 (8), 151-153.
    7. Juhasz, P.; Costello, C. E.; Biemann, K., Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry with 2-(4-Hydroxyphenylazo)Benzoic Acid Matrix. Journal of the American Society for Mass Spectrometry 1993, 4 (5), 399-409.
    8. Fitzgerald, M. C.; Parr, G. R.; Smith, L. M., Basic Matrices for the Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry of Proteins and Oligonucleotides. Analytical Chemistry 1993, 65 (22), 3204-3211.
    9. Bahr, U.; Karas, M.; Hillenkamp, F., Analysis of Biopolymers by Matrix-Assisted Laser-Desorption Ionization (Maldi) Mass-Spectrometry. Fresenius Journal of Analytical Chemistry 1994, 348 (12), 783-791.
    10. Ehring, H.; Karas, M.; Hillenkamp, F., Role of Photoionization and Photochemistry in Ionization Processes of Organic-Molecules and Relevance for Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry. Organic Mass Spectrometry 1992, 27 (4), 472-480.
    11. Knochenmuss, R., A quantitative model of ultraviolet matrix-assisted laser desorption/ionization. Journal of Mass Spectrometry 2002, 37 (8), 867-877.
    12. Allwood, D. A.; Dyer, P. E.; Dreyfus, R. W.; Perera, I. K., Plasma modelling of matrix assisted UV laser desorption ionisation (MALDI). Applied Surface Science 1997, 109, 616-620.
    13. Niu, S. F.; Zhang, W. Z.; Chait, B. T., Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. Journal of the American Society for Mass Spectrometry 1998, 9 (1), 1-7.
    14. Lai, Y. H.; Wang, C. C.; Lin, S. H.; Wang, Y. S.; Lee, Y. T., Solid-phase thermodynamic interpretation of ion desorption in matrix-assisted laser desorption/ionization. Abstracts of Papers of the American Chemical Society 2010, 240.
    15. Knochenmuss, R.; Dubois, F.; Dale, M. J.; Zenobi, R., The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry 1996, 10 (8), 871-877.
    16. Zhang, J. L.; Li, Z.; Zhang, C. S.; Feng, B. S.; Zhou, Z. G.; Bai, Y.; Liu, H. W., Graphite-Coated Paper as Substrate for High Sensitivity Analysis in Ambient Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2012, 84 (7), 3296-3301.
    17. Shih, Y. H.; Fu, C. P.; Liu, W. L.; Lin, C. H.; Huang, H. Y.; Ma, S., Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Small 2016, 12 (15), 2057-2066.
    18. Chen, S. M.; Chen, L.; Wang, J. N.; Hou, J.; He, Q.; Liu, J. A.; Wang, J. Y.; Xiong, S. X.; Yang, G. Q.; Nie, Z. X., 2,3,4,5-Tetrakis(3 ',4 '-dihydroxylphenyl)thiophene: A New Matrix for the Selective Analysis of Low Molecular Weight Amines and Direct Determination of Creatinine in Urine by MALDI-TOF MS. Analytical Chemistry 2012, 84 (23), 10291-10297.
    19. Chiang, C. K.; Chiang, N. C.; Lin, Z. H.; Lan, G. Y.; Lin, Y. W.; Chang, H. T., Nanomaterial-Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Peptides and Proteins. Journal of the American Society for Mass Spectrometry 2010, 21 (7), 1204-1207.
    20. Liu, Q.; Cheng, M.; Wang, J.; Jiang, G., Graphene Oxide Nanoribbons: Improved Synthesis and Application in MALDI Mass Spectrometry. Chemistry - A European Journal 2015, 21 (14), 5594-5599.
    21. Dong, M.-H.; Sun, S.-M.; Jin, B., Application of Modified Mesoporous Silica Materials for Analysis of Small Molecules by MALDI-TOF-MS. Chinese Journal of Analytical Chemistry 2014, 42 (9), 1235-1239.
    22. Kim, J. I.; Park, J. M.; Noh, J. Y.; Kang, M. J.; Pyun, J. C., Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of small volatile molecules using a parylene‐matrix chip. Rapid Communications in Mass Spectrometry 2014, 28 (21), 2301-2306.
    23. Kim, Y. K.; Min, D. H., The Structural Influence of Graphene Oxide on Its Fragmentation during Laser Desorption/Ionization Mass Spectrometry for Efficient Small‐Molecule Analysis. Chemistry–A European Journal 2015.
    24. Obena, R. P.; Tseng, M.-C.; Primadona, I.; Hsiao, J.; Li, I. C.; Capangpangan, R. Y.; Lu, H.-F.; Li, W.-S.; Chao, I.; Lin, C.-C.; Chen, Y.-J., UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chemical Science 2015, 6 (8), 4790-4800.
    25. Chung, P. W.; Charmot, A.; Gazit, O. M.; Katz, A., Glucan Adsorption on Mesoporous Carbon Nanoparticles: Effect of Chain Length and Internal Surface. Langmuir 2012, 28 (43), 15222-15232.
    26. Chung, P. W.; Charmot, A.; Click, T.; Lin, Y. C.; Bae, Y.; Chu, J. W.; Katz, A., Importance of Internal Porosity for Glucan Adsorption in Mesoporous Carbon Materials. Langmuir 2015, 31 (26), 7288-7295.
    27. Yabushita, M.; Li, P.; Bernales, V.; Kobayashi, H.; Fukuoka, A.; Gagliardi, L.; Farha, O. K.; Katz, A., Unprecedented selectivity in molecular recognition of carbohydrates by a metal-organic framework. Chemical Communications 2016, 52 (44), 7094-7097.
    28. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359 (6397), 710-712.
    29. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie-International Edition 2006, 45 (20), 3216-3251.
    30. Wan, Y.; Zhao, D. Y., On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews 2007, 107 (7), 2821-2860.
    31. Foley, H. C., Carbogenic Molecular-Sieves - Synthesis, Properties and Applications. Microporous Materials 1995, 4 (6), 407-433.
    32. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and Performance of Porous Graphitic Carbon in Liquid-Chromatography. Journal of Chromatography 1986, 352, 3-25.
    33. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
    34. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R., Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry B 2002, 106 (6), 1256-1266.
    35. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O., Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society 2000, 122 (43), 10712-10713.
    36. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412 (6843), 169-172.
    37. Shin, H. J.; Ryoo, R.; Kruk, M.; Jaroniec, M., Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chemical Communications 2001, (4), 349-350.
    38. Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M., Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. Journal of Physical Chemistry B 2002, 106 (18), 4640-4646.
    39. Ohkubo, T.; Miyawaki, J.; Kaneko, K.; Ryoo, R.; Seaton, N. A., Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane - Experiment and GCMC simulation. Journal of Physical Chemistry B 2002, 106 (25), 6523-6528.
    40. Vinu, A.; Mori, T.; Ariga, K., New families of mesoporous materials. Science and Technology of Advanced Materials 2006, 7 (8), 753-771.
    41. Kim, T. W.; Chung, P. W.; Lin, V. S. Y., Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size. Chemistry of Materials 2010, 22 (17), 5093-5104.
    42. Kim, T.-W. W.; Chung, P.-W. W.; Slowing, I. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S., Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano letters 2008, 8 (11), 3724-3727.
    43. Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M., Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society 2008, 130 (38), 12787-12793.
    44. Mo, X.; Lopez, D. E.; Suwannakarn, K.; Liu, Y.; Lotero, E.; Goodwin, J. G.; Lu, C. Q., Activation and deactivation characteristics of sulfonated carbon catalysts. Journal of Catalysis 2008, 254 (2), 332-338.
    45. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
    46. Schumacher, K.; Ravikovitch, P. I.; Du Chesne, A.; Neimark, A. V.; Unger, K. K., Characterization of MCM-48 materials. Langmuir 2000, 16 (10), 4648-4654.
    47. Zenobi, R.; Knochenmuss, R., Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews 1998, 17 (5), 337-366.
    48. Liang, X.; Montoya, A.; Haynes, B. S., Local Site Selectivity and Conformational Structures in the Glycosidic Bond Scission of Cellobiose. The Journal of Physical Chemistry B 2011, 115 (36), 10682-10691.
    49. Breuker, K.; Knochenmuss, R.; Zenobi, R., Proton transfer reactions of matrix-assisted laser desorption/ionization matrix monomers and dimers. Journal of the American Society for Mass Spectrometry 1999, 10 (11), 1111-1123.
    50. Lu, I. C.; Lee, C.; Lee, Y.-T.; Ni, C.-K., Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Annual Review of Analytical Chemistry 2015, 8 (1), 1-19.
    51. Breuker, K.; Knochenmuss, R.; Zhang, J.; Stortelder, A.; Zenobi, R., Thermodynamic control of final ion distributions in MALDI: in-plume proton transfer reactions. International Journal of Mass Spectrometry 2003, 226 (1), 211-222.
    52. Oomori, T.; Khajavi, S.; Kimura, Y.; Adachi, S.; Matsuno, R., Hydrolysis of disaccharides containing glucose residue in subcritical water. Biochemical Engineering Journal 2004, 18 (2), 143-147.
    53. Onda, A.; Ochi, T.; Yanagisawa, K., Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry 2008, 10 (10), 1033-1037.
    54. Pang, J. F.; Wang, A. Q.; Zheng, M. Y.; Zhang, T., Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications 2010, 46 (37), 6935-6937.
    55. Van de Vyver, S.; Peng, L.; Geboers, J.; Schepers, H.; de Clippel, F.; Gommes, C. J.; Goderis, B.; Jacobs, P. A.; Sels, B. F., Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry 2010, 12 (9), 1560-1563.
    56. Bui, S.; Verykios, X.; Mutharasan, R., Insitu Removal of Ethanol from Fermentation Broths .1. Selective Adsorption Characteristics. Industrial & Engineering Chemistry Process Design and Development 1985, 24 (4), 1209-1213.

    下載圖示
    QR CODE