簡易檢索 / 詳目顯示

研究生: 郭瀚翔
Kuo, Han-Shiang
論文名稱: Universal Gravitational Wave Parameter Estimation by Deep Learning
Universal Gravitational Wave Parameter Estimation by Deep Learning
指導教授: 林豐利
Lin, Feng-Li
口試委員: 卜宏毅
Pu, Hung-Yi
劉國欽
Liu, Guo-Chin
林豐利
Lin, Feng-Li
口試日期: 2021/07/26
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 67
英文關鍵詞: Gravitational wave, General relativity, Data analysis, Matched filter, Parameter estimation, Deep learning, Conditional variational autoencoder, Normalizing flow
研究方法: 次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202101110
論文種類: 學術論文
相關次數: 點閱:47下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • As the improvement of gravitational wave detectors, gravitational
    wave events become more and more popular which opens a new win-
    dow of astronomy. In 2017, a binary neutron star event, GW170817,
    has been detected through the gravitational wave and also the electro-
    magnetic signal. After that, people start to consider an efficient way
    to detect the GW and extract its dynamics parameters. In this thesis,
    we construct a Bayesian inference based on deep learning machine,
    CVAE, for the parameter estimation of binary black hole coalescence.
    This machine can obtain the inference of 5-dimensional parameters of
    the GW event within one second, where the parameters are two com-
    ponent mass m1 , m2 , luminosity distance dL , and time and phase of
    coalescence (tc , φ0 ). Since the noise of real detectors varies from time
    to time, in contract to previous CVAE envelopments, we train our
    machine not only by strain data but also the corresponding amplitude
    spectrum density, which is used to characterize the noise background.
    We find our machine can obtain the compatible result in comparison
    to traditional PE algorithm even with the noise drift, which means
    the noise background varies event by event. Finally, we apply our
    machine to the LIGO/Virgo third observing run (O3) events to test
    the performance of our machine against real data.

    Contents 1 Introduction 1 1.1 Background of gravitational wave observation 1 1.1.1 background 1 1.1.2 Basic data analysis for gravitational wave 4 1.1.3 Parameters Estimation 5 1.1.4 Introduction to Markov Chain Monte Carlo and nested sampling 7 1.2 Background of deep learning and autoencoder 9 1.2.1 Basic concept of deep learning 9 1.2.2 Conditional variational autoencoder 10 1.2.3 Normalizing flow 13 1.2.4 MNIST as an example 16 1.3 Applications of deep learning to GW data analysis 19 1.3.1 Application to low latency detection 20 1.3.2 Application to parameter estimation 21 2 Review of Parameter estimation by CVAE 23 2.1 Parameter estimation by CVAE 23 2.1.1 The cost function 23 2.1.2 The training procedure 25 2.1.3 Observation 27 2.2 Parameter estimation with autoregressive neural network 31 2.2.1 Autoregressive flow 33 2.2.2 Combined models 35 2.2.3 Observation 36 3 Universal CVAE model with PSD condition 39 3.1 Motivation 39 3.2 Preparation of training data 40 3.3 The detailed structure of CVAE model 42 3.4 Training the CVAE Model and the Performance 44 3.5 Application to O3 events 53 3.6 Summary of chapter 3 56 4 Conclusion 58 Glossaries and Acronyms 60 Bibliography 62

    [1] Hunter Gabbard, Chris Messenger, Ik Siong Heng, Francesco Tonolini, and Roderick Murray-Smith. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. arXiv preprint arXiv:1909.06296, 2019.
    [2] Stephen R Green, Christine Simpson, and Jonathan Gair. Gravitational-wave parameter estimation with autoregressive neural network flows. Physical Review D, 102(10):104057, 2020.
    [3] Han-Shiang Kuo and Feng-Li Lin. Conditional noise deep learning for parameter estimation of gravitational wave events, 2021.
    [4] Benjamin P Abbott, Richard Abbott, TD Abbott, MR Abernathy, Fausto Acernese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari, et al. Observation of gravitational waves from a binary black hole merger. Physical review letters, 116(6):061102, 2016.
    [5] B Abbott, S Jawahar, N Lockerbie, and K Tokmakov. Ligo scientific collaboration and virgo collaboration (2016) gw150914: first results from the search for binary black hole coalescence with advanced ligo. physical review d, 93 (12). issn 1550-2368. PHYSICAL REVIEW D Phys Rev D, 93:122003, 2016.
    [6] Michele Vallisneri, Jonah Kanner, Roy Williams, Alan Weinstein, and Branson Stephens. The LIGO open science center. Journal of Physics: Conference Series, 610:012021, may 2015.
    [7] R Abbott, TD Abbott, S Abraham, F Acernese, K Ackley, A Adams, C Adams, RX Adhikari, VB Adya, C Affeldt, et al. Gwtc-2: Compact binary coalescences observed by ligo and virgo during the first half of the third observing run. Physical Review X, 11(2):021053, 2021.
    [8] Bruce Allen, Warren G Anderson, Patrick R Brady, Duncan A Brown, and Jolien DE Creighton. Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries. Physical Review D, 85(12):122006, 2012.
    [9] John Veitch, Vivien Raymond, Benjamin Farr, Will Farr, Philip Graff, Salvatore Vitale, Ben Aylott, Kent Blackburn, Nelson Christensen, Michael Coughlin, et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the lalinference software library. Physical Review D, 91(4):042003, 2015.
    [10] Christopher Michael Biwer, Collin D Capano, Soumi De, Miriam Cabero, Duncan A Brown, Alexander H Nitz, and Vivien Raymond. Pycbc inference: A python-based parameter estimation toolkit for compact binary coalescence signals. Publications of the Astronomical Society of the Pacific, 131(996):024503, 2019.
    [11] Gregory Ashton, Moritz Hübner, Paul D Lasky, Colm Talbot, Kendall Ackley, Sylvia Biscoveanu, Qi Chu, Atul Divakarla, Paul J Easter, Boris Goncharov, et al. Bilby: a user-friendly bayesian inference library for gravitational-wave astronomy. The Astrophysical Journal Supplement Series, 241(2):27, 2019.
    [12] John Skilling. Nested sampling. AIP Conference Proceedings, 735(1):395–405, 2004.
    [13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
    [14] Diederik P Kingma and Max Welling. An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691, 2019.
    [15] Fernando Pérez-Cruz. Kullback-leibler divergence estimation of continuous distributions. In 2008 IEEE international symposium on information theory, pages 1666–1670. IEEE, 2008.
    [16] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770, 2015.
    [17] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039, 2018.
    [18] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516, 2014.
    [19] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint arXiv:1605.08803, 2016.
    [20] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.
    [21] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In International Conference on Machine Learning, pages 881–889, 2015.
    [22] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders. arXiv preprint arXiv:1606.05328, 2016.
    [23] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. In Advances in neural information processing systems, pages 4743–4751, 2016.
    [24] Daniel George and Eliu Antonio Huerta. Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced ligo data. Physics Letters B, 778:64–70, 2018.
    [25] Grégory Baltus, Justin Janquart, Melissa Lopez, Amit Reza, Sarah Caudill, and Jean-René Cudell. Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. Physical Review D, 103(10):102003, 2021.
    [26] Hang Yu, Rana X Adhikari, Ryan Magee, Surabhi Sachdev, and Yan-bei Chen. Early warning of coalescing neutron-star and neutron-star-black-hole binaries from nonstationary noise background using neural networks. arXiv preprint arXiv:2104.09438, 2021.
    [27] Filip Morawski, Micha l Stanis law Bejger, Elena Cuoco, and Luigia Petre. Anomaly detection in gravitational waves data using convolutional autoencoders. Machine Learning: Science and Technology, 2021.
    [28] Bai-Jiong Lin, Xiang-Ru Li, and Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks. Frontiers of Physics, 15(2):1–7, 2020.
    [29] Jingkai Yan, Mariam Avagyan, Robert E Colgan, Doğa Veske, Imre Bartos, John Wright, Zsuzsa Márka, and Szabolcs Márka. Generalized approach to matched filtering using neural networks. arXiv preprint arXiv:2104.03961, 2021.
    [30] Benjamin P Abbott, Rich Abbott, TD Abbott, Fausto Acernese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari, VB Adya, et al. Gw170817: observation of gravitational waves from a binary neutron star inspiral. Physical review letters, 119(16):161101, 2017.
    [31] Leo P Singer and Larry R Price. Rapid bayesian position reconstruction for gravitational-wave transients. Physical Review D, 93(2):024013, 2016.
    [32] Alvin JK Chua, Chad R Galley, and Michele Vallisneri. Reduced-order modeling with artificial neurons for gravitational-wave inference. Physical review letters, 22(21):211101, 2019.
    [33] Alvin JK Chua and Michele Vallisneri. Learning bayesian posteriors with neural networks for gravitational-wave inference. Physical review letters, 124(4):041102, 2020.
    [34] Chayan Chatterjee, Linqing Wen, Kevin Vinsen, Manoj Kovalam, and Amitava Datta. Using deep learning to localize gravitational wave sources. Physical Review D, 100(10):103025, 2019.
    [35] Stephen R Green and Jonathan Gair. Complete parameter inference for gw150914 using deep learning. arXiv preprint arXiv:2008.03312, 2020.
    [36] Margherita Fasano, Kaze WK Wong, Andrea Maselli, Emanuele Berti, Valeria Ferrari, and Bangalore S Sathyaprakash. Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations. Physical Review D, 102(2):023025, 2020.
    [37] Li-Li Wang, Jin Li, Nan Yang, and Xin Li. Identifying extra high frequency gravitational waves generated from oscillons with cuspy potentials using deep neural networks. New Journal of Physics, 21(4):043005, 2019.
    [38] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145, 2019.
    [39] Asghar Ghasemi and Saleh Zahediasl. Normality tests for statistical analysis: a guide for non-statisticians. International journal of endocrinology and metabolism, 10(2):486, 2012.
    [40] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.
    [41] B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
    [42] B.P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X, 9(3):031040, 2019.
    [43] W Del Pozzo and J Veitch. Cpnest: Parallel nested sampling in python. GitHub https://github. com/johnveitch/cpnest, 2015.
    [44] Joshua S Speagle. dynesty: a dynamic nested sampling package for estimating bayesian posteriors and evidences. Monthly Notices of the Royal Astronomical Society, 493(3):3132–3158, 2020.
    [45] Tjonnie Guang Feng Li. Extracting Physics from Gravitational Waves: Testing the Strong-field Dynamics of General Relativity and Inferring the Large-scale Structure of the Universe. PhD thesis, Vrije U., Amsterdam, 2013.
    [46] Daniel Foreman-Mackey, David W Hogg, Dustin Lang, and Jonathan Goodman. emcee: the mcmc hammer. Publications of the Astronomical Society of the Pacific, 125(925):306, 2013.
    [47] B. P. Abbott et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel., 23(1):3, 2020.
    [48] Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D. E. Creighton. Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries. Phys. Rev. D, 85:122006, Jun 2012.
    [49] Cody Messick, Kent Blackburn, Patrick Brady, Patrick Brockill, Kipp Cannon, Romain Cariou, Sarah Caudill, Sydney J. Chamberlin, Jolien D. E. Creighton, Ryan Everett, and et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Physical Review D, 95(4), Feb 2017.
    [50] Stephen R. Green, Christine Simpson, and Jonathan Gair. Gravitational-wave parameter estimation with autoregressive neural network flows. Physical Review D, 102(10), Nov 2020.
    [51] Ronald Yu. A tutorial on vaes: From bayes’ rule to lossless compression, 2020.
    [52] Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference with inverse autoregressive flow. CoRR, abs/1606.04934, 2016.
    [53] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, and Bernhard Schölkopf. Real-time gravitational-wave science with neural posterior estimation, 2021.
    [54] Gracedb gravitational-wave candidate event database (ligo/virgo o3 public alerts).https://gracedb.ligo.org/superevents/public/O3/.
    [55] Sebastian Khan, Katerina Chatziioannou, Mark Hannam, and Frank Ohme. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 100(2):024059, 2019.
    [56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

    下載圖示
    QR CODE