簡易檢索 / 詳目顯示

研究生: 徐金煌
Hsu, Chin-Huang
論文名稱: 以Pix4Dmapper進行UAV影像快速空間資料產製之探討
A Study of the Use of Innovative Software Pix4Dmapper to Generate Spatial Data rapidly from UAV's Aerial Images
指導教授: 張國楨
Chang, Kuo-Chen
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: 無人飛行載具Pix4Dmapper影像匹配
英文關鍵詞: UAV, Pix4Dmapper, image matching
DOI URL: https://doi.org/10.6345/NTNU202202942
論文種類: 學術論文
相關次數: 點閱:111下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因微機電系統(Micro-electromechanical Systems - MEMS)的演進迅速,提升無人飛行載具UAV (Unmanned Aerial Vehicle)自動導航系統的可靠度和性能,使得UAV操控可以完全自動化,提升航拍作業時的安全性,又因UAV有較佳的機動性和可在低空30-50公尺執行任務,以取得高解析度的航拍影像,因此平時可進行長期的環境變遷監測;災時可快速取得影像資料,以做為決策分析等應用。但傳統使用UAV進行正射影像產製,必須透過地面控制測量、空中三角測量與立體製圖等方式,才可以取得正射影像與地形資訊,無法滿足災害發生時需快速取得空間資料之需求,因此如何透過UAV所拍攝的影像資訊快速產製正射影像與地形資訊為本研究之重點。本研究將以Pix4Dmapper為先進技術軟體,探討以UAV航拍取像後,透過先進技術取得正射影像與地形資料之可行性。結果顯示,UAV拍攝所得影像透過Pix4Dmapper進行影像匹配三維點生成地表模型,快速生產正射影像,並可以不需經由人工介入的空中三角測量步驟回推內、外方位參數。並以苗栗後龍溪測區為例,在涵蓋範圍4平方公里,影像數量354張,在自動化的作業流程下,可在5小時內取得相關空間資料,經檢核後,正射影像之平面精度均方根誤差30 cm內。

    It is the rapidly developing and evolution of micro-electromechanical systems (MEMS) in the past years and it have been improved for the reliability and performance of the automatic navigation and operation system of UAV (Unmanned Aerial Vehicle), hence UAV can be fully automated and improved the security during aerial photo capturing. Due to UAV has better mobility and can perform tasks at low altitude in 30m to 50m to obtain high-resolution aerial image, so it can be using in long-term environmental change monitoring in normal ; but it can quickly obtain the aerial image data in disaster to analyze and make the decision and other applications. However, the traditional orthoimage process to produce images captured by UAV, it has to implement ground-based measurements, aerial triangulation, and stereoscopic mapping are required to obtain orthophoto and terrain information, but it can not meet the need for rapid acquisition of spatial data when a disaster occurs. How to produce orthophoto and terrain information by UAV is the focus of this study. The study focus on optimizing the process and on reducing time-consumption to acquiring orthophotos and the DSM from UAVs’ aerial image by using Pix4Dmapper. The Pix4Dmapper could automatically process orthophotos and the DSM purely using aerial image captured by UAVs. The Houlong River, Miaoli, Taiwan case is used in the study. The Houlong River covers an area about 4 sq. km, and the analysis of aerial images of the River are 354 images. The automatic process workflow of acquiring orthophotos and the DSM from the aerial images by the Pix4Dmapper is within 5 hours. And the accuracy achieve 30 cm RMS error.

    第一章、緒論 1 第一節 研究動機與目的 1 第二節 文獻探討 3 第三節 遭遇問題與解決方法 4 第二章、研究測區與實驗 5 第一節 使用軟硬體設備 5 第二節 Pix4DMapper軟體操作業流程 6 第三節 研究測區-苗栗後龍溪實際案例探討 11 第四節 未做控制點約制的後龍溪正射影像平面精度之檢核 27 第三章、結論與建議 30 參考文獻 31 附錄一、控制點與檢核點的點誌記 33 附錄二、後龍溪測區成果品質報告書 45 致謝 54

    1. Laurent, and Glassey, "Photogrammétrie par drone traitée à l'aide de pix4UAV Cloud Pro"(2012)
    2. Anderson, and Eric, "ASPRS Camera Calibration Panel Report" (2000)
    3. Küng, and Olivier, "Enabling UAV-based 3D Mapping", GIM International, Vol.26, No.7 (2012)
    4. Kerdsrilek, and Jedsada, "Reduction of DSM to DTM and Quality Assessment", Photogrammetry and remote sensing project (2008)
    5. Ge-Wen, Fang-Shii, and Feng-Liang, "A Study of Vehicle-Based Mobile Mapping System Using GPS and Non-Metric Camera", Vol.39, No.2, Journal of C.C.I.T, November (2010)
    6. Sahar, Muthukumar, and French, "Using Aerial Imagery and GIS in Automated Building Footprint Extraction and Shape Recognition for Earthquake Risk Assessment of Urban Inventories", Vol. 48, Issue 9, pp.3511-3520, IEEE Transactions on Geoscience and Remote Sensing (2010)
    7. Henri Eisenbeiss, "A Mini Unmanned aerial Veficle(UAV): System Overview and Image Acquisition", International Workshop on-Processing and Visualization Using High-resolution Imagery (2004)
    8. Timothy, Christopher, Mark, Ivan, and Ryan, "Civil UAV Capability Assessment" (2004)
    9. Greg, George, "USGS Digital Aerial Mapping Camera Status", 51 st Photogrammetric Week in Stuttgart (2007)
    10. U.S. Geological Survey National Mapping Division, "Procedure For Compensation of Aerial camera Lens Distortion as Computed by the Simultaneous Multiframe Analytical Calibration(SMAC) System" (2008)
    11. J. Vallet , F. Panissod , C. Strecha and M. Tracol "Photogrammetric Performance of an Ultra Light Weight Swinglet “UAV” " (2011)
    12. 內政部國土測繪中心,「101 年度發展無人飛行載具航拍技術作業 工作總報告書」,2012。
    13. 內政部國土測繪中心,「105年度發展無人飛行載具系統測繪作業 工作總報告書」,2016。
    14. 羅正方,「運用視距外自主飛控無人載具(UAV)進行國土資訊偵蒐與災區探勘」,經緯衛星資訊股份有限公司,2011。
    15. 謝幸宜,「以自率光束法提升四旋翼 UAV 航拍影像之定位精度」,碩士論文,國立政治大學地政學系、私立中國地政研究所,台北,2011。
    16. 廖泫銘,「海峽兩岸無人載具航測作業標準以及應用」,2011無人飛行載具在航拍製圖及GIS應用技術研討會,台北,2011。
    17. 邱式鴻,「旋翼UAS 影像製作飛航事故現場正射影像之精度探討」,航空安全及管理季刊,Vol. 2, No. 4, October 2015。
    18. 顏怡和,「不同相機率定條件對UAV影像空三精度之探討」,台灣地理資訊學會年會暨學術研討會論文集,台北,2011。
    19. 蕭震洋、安軒霈、陳俊愷、饒見有、陳樹群,「應用UAV 量化台東金崙溪河川型態演變及致災特性」,中國土木水利工程學刊 第二十七卷 第三期,2015。
    20. 白絜成、劉益誠、蕭宇伸、連惠邦、林秉賢,「無人飛行載具掛載消費型攝影機應用於防災可行性研究」,中華水土保持學報, 第四十六卷 第三期,2015。
    21. Pix4D, https://support.pix4d.com/hc/en-us#gsc.tab=0網站

    下載圖示
    QR CODE