簡易檢索 / 詳目顯示

研究生: 鄭如均
Cheng, Ju Chun
論文名稱: 蒸發冷卻模組應用於汽車空調機之性能研究
A study of the effects on an evaporative cooling unit of automotive air conditioner.
指導教授: 鄭慶民
Cheng, Ching Min
鄧敦平
Teng, Tun-Ping
口試委員: 尤尚邦
Yo, Shang Bang
鄭慶民
Cheng, Ching Min
鄧敦平
Teng, Tun-Ping
口試日期: 2022/07/12
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 79
中文關鍵詞: 蒸發冷卻蜂巢式紙纖維車用空調機冷凝器散熱
DOI URL: http://doi.org/10.6345/NTNU202201727
論文種類: 學術論文
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用蜂巢式纖維紙板製成不同厚度的蒸發冷卻板,並針對汽車空調機開發出冷凝器蒸發冷卻模組。蒸發冷卻模組設置於室外機冷凝器入風處,並引流冷凝水平均分配水流至紙板上方,以預冷室外機側之空氣溫度的方式,提升冷凝器的散熱效果,進而提高空調機的運轉效率。研究的環境標準參照CNS-7897-D3079汽車用冷氣機檢驗法測試,設定低溫條件(C1:30℃)、標準條件(C2:35℃)及高溫條件(C3:40℃);冷卻板的厚度則分別為CM1(2 cm)、CM2(3 cm)以及CM3(5 cm)。研究結果顯示,在C3條件下,CM2與CM1在1000 rpm轉速下分別可提升能源效率(EER)達40.74%與29.63%;裝設蒸發冷卻模組在1800 rpm轉速均可提升EER,其中以CM3表現最佳,可提升EER達63.44%為。然而,在C1條件下,1000及1800 rpm轉速均無法提升冷氣能力,此種現象主要是因為在低溫條件之下蒸發冷卻量較低,導致蒸發冷卻提升冷凝器的散熱量低於冷凝器裝設蒸發冷卻板低降低風量所造成的散熱量下降。然而,在現今臺灣夏季高溫的條件之下,運用蒸發冷卻模組去提升汽車空調機的性能方面仍深具潛力。

    The evaporative cooling module in this study is composed of a water flow distribution system made of honeycomb fiberboard is designed for vehicle air conditioner. There are three evaporative cooling modules with different thicknesses , which are installed at the air inlet of the condenser of the outdoor unit. And the condensed water is drained to evenly distribute the water flow to the top of the cardboard, so as to pre-cool the air temperature on the outdoor unit side, to improve the heat dissipation of the condenser.
    The environmental standards studied are tested with reference to CNS-7897-D3079 automobile air conditioner inspection method, and low temperature conditions (C1), standard conditions (C2) and high temperature conditions (C3) are set. The research results show that under the condition of C3, CM2 has a better energy efficiency ratio at 1000 rpm, and its variation rate is 40.74%, followed by 29.63% of CM1; while the energy efficiency at 1800 rpm is all positive, with CM3 63.44% is the best. However, the variation rates of the air-conditioning capacity under the conditions of C1 temperature, 1000 and 1800 rpm are all negative, indicating that the indirect evaporative cooling module cannot effectively improve the air-conditioning capacity at low temperature. The possible reason for this phenomenon is that the capacity of the air conditioner decreases and the amount of condensed water decreases, so that the evaporative cooling module cannot perform effective evaporative cooling.

    摘要 i Abstract iii 目次 v 表次 vi 圖次 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究流程 2 1.4 論文架構 4 1.5 文獻回顧 5 第二章 理論基礎與文獻探討 7 2.1 蒸氣壓縮冷凍循環系統 7 2.1.1 理想蒸氣壓縮冷凍循環系統 8 2.1.2 實際蒸氣壓縮冷凍循環系統 10 2.1.3蒸氣壓縮冷凍循環系統之熱力性質分析 12 2.2 空氣調節系統 15 2.2.1 車用空調機 15 2.2.2 空氣調節之熱力性質分析 15 2.2.3 空調機之性能試驗標準 19 2.3 蒸發冷卻技術 21 2.3.1直接蒸發冷卻 21 2.3.2間接蒸發冷卻 21 2.3.3空氣和水接觸前後之狀態分析 212 第三章 實驗設計 24 3.1 實驗系統 25 3.1.1 環境控制系統 26 3.1.2實驗設備 28 3.1.3相關實驗量測裝置 29 3.2 車用空調機性能試驗方法及步驟 32 3.3 蒸發冷卻模組設計 34 3.4 儀器與設備介紹 39 3.5 數據處理 47 3.6 不確定性分析 49 第四章 結果與討論 50 4.1 空氣側狀態點性質分析 51 4.1.1室內機出回風狀態點 51 4.1.2室外機出回風狀態點 55 4.2 空氣側性能分析與比較 58 4.3 機械側性能分析與比較 65 第五章 結論與建議 69 5.1 結論 69 5.2 後續研究與建議 71 參考文獻 72 符號釋義 76

    [1]ee A.E. Kabeel, Y. A. F. El-Samadony and M. H. Khiera, “Performance evaluation of energy efficient evaporatively air-cooled chiller”, Applied Thermal Engineering, vol. 122, pp. 204-213, 2017.
    [2] X. Huang, L. Chen, L. Yang, X. Du and Y. Yang, “Evaporation aided improvement for cooling performance of large scale natural draft dry cooling system”, Applied Thermal Engineering, vol.163, 114350, 2019.
    [3]11 H. Yang, L. Rong, X. Liu, L. Liu, M. Fan and N. Pei, “Experimental research on spray evaporative cooling system applied to air-cooled chiller condenser”, Energy Reports, vol. 6, pp. 906-913, 2020.
    [4]1 Y. A. Horr, B. Tashtoush, N. Chilengwe, & M. Musthafa, “Operational mode optimization of indirect evaporative cooling in hot climates”, Case Studies in Thermal Engineering, vol.18, 100574, 2020.1
    [5] 經濟部統計處,工業產銷存動態調查-產品統計。取自https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx
    [6] 台灣電力公司, “電價知識專區-電價小常識” ,台灣電力公司,取自https://www.taipower.com.tw/TC/page.aspx?mid=213
    [7] 行政院主計總處,107年家庭收支調查報告,2019。取自https://win.dgbas.gov.tw/fies/doc/result/107.pdf
    [8]11Abby Huang, “台灣是缺電,還是太「浪費」電——拼命蓋電廠其實不見得有用”,The News Lens 關鍵評論,2018年07月03日,取自https://www.thenewslens.com/article/98103
    [9] W. Ketwong, T. Deethaya, T. Kiatsiriroat, “Performance enhancement of air conditioner in hot climate by condenser cooling with cool air generated by direct evaporative cooling”, Case Studies in Thermal Engineering, vol. 26, pp. 101-127, 2021.
    [10] A. Y. T. Al-Zubaydi, G. Hong, “Experimental study of a novel water-spraying configuration in indirect evaporative cooling”, Applied Thermal Engineering, vol. 151, pp. 283-293, 2019.
    [11] F. Cominoa, S Milani, S. D. Antonellis, C. M. Joppolo, M. R. de Adana, “Simplified performance correlation of an indirect evaporative cooling system: Development and validation”, International Journal of Refrigeration, vol. 88, pp.307-317, 2018.
    [12] M.R. Islam, K.A. Jahangeer, K.J. Chua, “Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems”, Energy, vol. 87, pp. 390-399, 2015.
    [13] A. Alahmer, “Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning”, Applied Thermal Engineering, vol. 98, pp. 1273-1285, 2016.
    [14] P. Martínez, J. Ruiz, C.G. Cutillas, P.J. Martínez, A.S. Kaiser, M. Lucas, “Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser”, Applied Thermal Engineering, vol. 105, pp. 1041-1050, 2016.
    [15] Z.A. Haidara, J. Orfib, Z. Kaneesamkandi, “Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency”, Results in Physics, vol. 11, pp. 690-697, 2018.
    [16] I. Atmaca, A. Senol, A. Çag˘lar, “Performance testing and optimization of a split-type air conditioner with evaporatively-cooled condenser”, Engineering Science and Technology, an International Journal, vol. 32, pp. 101064, 2022.
    [17] A.Y.T. Al-Zubaydi, G. Hong, Experimental study of a novel water-spraying configuration in indirect evaporative cooling, Appl. Therm. Eng. 151 (2019) 283–293.
    [18] A. Malli, H.R. Seyf, M. Layeghi, S. Sharifian, H. Behravesh, Investigating the performance of cellulosic evaporative cooling pads, Energy Convers. Manage. 52 (2011) 2598–2603.
    [19] F.J. Rey Martınez, E. Velasco Gómez, R. Herrero Mart ́ ın, J. Mart ́ ınez Gutiérrez, F. ́ Varela Diez, Comparative study of two different evaporative systems: an indirect evaporative cooler and a semi-indirect ceramic evaporative cooler, Energy Build. 36 (2004) 696–708.
    [20] A. Hasan, Indirect evaporative cooling of air to a sub-wet bulb temperature, Appl. Therm. Eng. 30 (2010) 2460–2468.
    [21] G. Heidarinejad, S. Moshari, Novel modeling of an indirect evaporative cooling system with cross-flow configuration, Energy Build. 92 (2015) 351–362.
    [22] E. Hajidavalloo, H. Eghtedari, Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser, Int. J. Refrig. 33 (2010) 982–988.
    [23] T. Wang, C. Sheng, A.G. Agwu Nnanna, Experimental investigation of air conditioning system using evaporative cooling condenser, Energy Build. 81 (2014) 435–443.
    [24] M.R. Islam, K.A. Jahangeer, K.J. Chua, Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems, Energy 87 (2015) 390–399.
    [25] A. Schmidt, R. Paul, E. Classen, S. Morlock, J. Beringer, Comfort testing and fit analysis of military textiles, Perform. Test. Text. (2016) 25–37.
    [26] P. Xu, X. Ma, X. Zhao, K.S. Fancey, Experimental investigation on performance of fabrics for indirect evaporative cooling applications, Build. Environ. 110 (2016) 104–114.
    [27] F. Wang, Chapter 11: Moisture absorption and transport through textiles, Eng. HighPerform. (2018) 247–275.
    [28] CNS 10798-C3184, Chinese National Standard- Refrigerated display cabinets–Classification, requirements and test conditions, National Bureau of Standards, 2014.
    [29] NIST, NIST Reference Fluid Thermodynamic and Transport Properties Database: Version 10.0 (REFPROP 10.0), 2018.
    [30] T.P. Teng, C.C. Yu, Heat dissipation performance of MWCNTs nano-coolant for vehicle, Exp. Therm. Fluid Sci. 49 (2013) 22–30.
    [31] European Commission, 2030 climate & energy framework. Retrieved From https://ec.europa.eu/clima/policies/strategies/2030_en
    [32] 鄭宇茹, “領先世界的歐盟氣候法草案來得及挽救全球氣候嗎?” ,CSR@天下,2020年03月13日,取自https://csr.cw.com.tw/article/41372
    [33] JRAIA,世界のエアコン需要推定, 2019. Retrieved from https://www.jraia.or.jp/download/pdf/we2019.pdf
    [34] 李翰林, “台灣如何減碳,因應氣候變遷?” ,地球公民基金會,2019年12月16日,取自https://reurl.cc/5lVRL7

    無法下載圖示 本全文未授權公開
    QR CODE