簡易檢索 / 詳目顯示

研究生: 姚松甫
Yao, Song-Fu
論文名稱: 超薄二維碲化亞銅/石墨烯之生長與其自發電應力感測之應用
Synthesis of Ultrathin 2D Copper(I) Telluride on Graphene and Its Application for Self-Powered Strain Sensor
指導教授: 陳家俊
Chen, Chia-Chun
謝雅萍
Hsieh, Ya-Ping
口試委員: 陳家俊
Chen, Chia-Chun
謝雅萍
Hsieh, Ya-Ping
陳永芳
Chen, Yang-Fang
謝馬利歐
Mario Hofmann
口試日期: 2022/07/15
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 碲化亞銅石墨烯熱電材料應力感測器
英文關鍵詞: Copper(I) telluride, Graphene, Thermoelectric material, Strain sensor
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201020
論文種類: 學術論文
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類科技日新月異,卻也加劇了對石化燃料的依賴,發展出環境友善的綠色能源勢在必行。碲化亞銅是一種極具展望的熱電材料,但是關於二維碲化亞銅的文獻仍為數不多。在此,我們利用固態化學反應生長碲化亞銅薄膜於石墨烯上,石墨烯作為凡得瓦外延生長的模板以及擴散阻擋層,最終展現出優異的熱電與機電性能。上述材料特性可以達成自發電應力感測器,藉由橫向的溫度差異產生電能,提供快速且耐用的應力感測,有希望成為攜帶式的自主健康檢測器,為生活帶來諸多便利性,展現了二維碲化亞銅與石墨烯異質結構的潛力。

    The dependence on fossil fuels has been rapidly increasing with the development of technology. It is imperative to develop eco-friendly green energy, such as thermoelectrics. Particularly, copper(I) telluride is a promising thermoelectric material. However, the synthesis of copper(I) telluride remains in bulk, and copper(I) telluride thin film is still missing. In this work, we use solid-state chemical reaction to grow copper(I) telluride thin films on graphene. Graphene serves as growth template for van der Waals epitaxy of copper(I) telluride and diffusion barrier, and finally exhibit excellent thermoelectric and electromechanical properties. The aforementioned material properties can achieve self-powered strain sensors, which can generate electricity by lateral temperature differences and provide fast and durable stress sensing. It has the potential to become a portable autonomous health monitoring sensors, which not only make our life more convenient but also show the prospect of two-dimensional copper(I) telluride and graphene heterostructures.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 二維材料(2D Material) 2 1.4 石墨烯 4 1.4.1 機械剝離法製備石墨烯 5 1.4.2 化學氣相沉積法製備石墨烯 6 1.4.3 石墨烯的機械性質 7 1.5 碲化亞銅 7 第二章 實驗原理 12 2.1 擴散阻擋層 12 2.2 凡得瓦外延生長 13 2.3 熱電效應 15 2.3.1 賽貝克效應(Seebeck Effect) 15 2.3.2 帕耳帖效應(Peltier Effect) 16 2.3.3 熱電優值(Figure of Merit, ZT) 17 2.4 應變片(Strain Gauge) 18 第三章 實驗方法與儀器介紹 20 3.1 實驗流程 20 3.1.1 銅箔拋光前處理 20 3.1.2 銅箔退火前處理 21 3.1.3 石墨烯生長 22 3.1.4 碲化亞銅生長 23 3.1.5 溼轉印步驟 24 3.2 實驗儀器 25 3.2.1 旋轉塗佈機(Spin Coater) 25 3.2.2 電解拋光系統(Electrochemical Polishing system) 27 3.2.3 化學氣相沉積系統(Chemical Vapor Deposition System, CVD) 29 3.2.4 LED 曝光顯影系統(Photolithography System) 30 3.2.5 熱蒸鍍機(Thermal Evaporator) 32 3.3 量測儀器 34 3.3.1 拉曼光學顯微系統(Raman Scattering Spectrometer) 34 3.3.2 原子力顯微鏡(Atomic Force Microscopy, AFM) 37 3.3.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40 3.3.4 穿 透 式 電 子 顯 微 鏡 (Transmission Electron Microscope, TEM) 42 3.3.5 X 射線繞射儀(X-ray Diffractometer, XRD) 45 3.3.6 背向散射電子繞射儀(Electron Backscatter Diffraction, EBSD) 47 3.3.7 X 射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 49 3.3.8 電性量測系統(Electrical Measurement System) 50 第四章 結果與討論 51 4.1 以化學氣相沉積法生長石墨烯於銅箔基板 51 4.1.1 生長石墨烯於預退火銅箔基板 51 4.1.2 石墨烯材料鑑定與表徵分析 57 4.2 二維碲化亞銅之生長與生長機制 59 4.2.1 以不同溫度生長碲化亞銅之比較 59 4.2.2 碲化亞銅在不同晶向的石墨烯/銅箔生長 60 4.2.3 二維碲化亞銅的生長機制 64 4.3 二維碲化亞銅材料鑑定與分析 67 4.3.1 原子力顯微鏡表面分析 67 4.3.2 拉曼光譜分析 68 4.3.3 X 射線光電子能譜分析 69 4.3.4 結構分析 70 4.3.5 能量色散 X 射線光譜分析 72 4.3.6 缺少石墨烯模板生長碲化亞銅 73 4.4 二維碲化亞銅/石墨烯自發電應力感測之應用 75 第五章 結論 81 參考文獻 82

    1. Jarzembski, A.; Shaskey, C.; Park, K., Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Frontiers in Energy 2018, 12, 1-29.
    2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669.
    3. Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F., Measurement of the optical conductivity of graphene. Physical review letters 2008, 101 (19), 196405.
    4. Geim, A. K., Graphene: status and prospects. science 2009, 324 (5934), 1530-1534.
    5. Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H.; Chen, Y.; Fox, B., Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Scientific reports 2014, 4 (1), 1-7.
    6. Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z., Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C 2020, 8 (2), 387-440.
    7. Bat‐Erdene, M.; Bati, A. S.; Qin, J.; Zhao, H.; Zhong, Y. L.; Shapter, J. G.; Batmunkh, M., Elemental 2D Materials: Solution‐Processed Synthesis and Applications in Electrochemical Ammonia Production. Advanced Functional Materials 2022, 32 (2), 2107280.
    8. Mannix, A. J.; Zhang, Z.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C., Borophene as a prototype for synthetic 2D materials development. Nature nanotechnology 2018, 13 (6), 444-450.
    9. Batmunkh, M.; Bat‐Erdene, M.; Shapter, J. G., Phosphorene and phosphorene‐based materials–prospects for future applications. Advanced Materials 2016, 28 (39), 8586-8617.
    10. Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M.-C.; Mehdaoui, A.; Sonnet, P.; Pirri, C., Continuous germanene layer on Al (111). Nano letters 2015, 15 (4), 2510-2516.
    11. Silvestri, A.; Criado, A.; Prato, M., Concluding remarks: Chemistry of 2-dimensional materials: beyond graphene. Faraday Discussions 2021, 227, 383-395.
    12. Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z., Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570 (7759), 91-95.
    13. Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J., High‐gain phototransistors based on a CVD MoS2 monolayer. Advanced materials 2013, 25 (25), 3456-3461.
    14. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J., Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano letters 2014, 14 (6), 3185-3190.
    15. Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews 2018, 47 (9), 3100-3128.
    16. Sarma, S. D.; Adam, S.; Hwang, E.; Rossi, E., Electronic transport in two-dimensional graphene. Reviews of modern physics 2011, 83 (2), 407.
    17. Peierls, R. In Quelques propriétés typiques des corps solides, Annales de l'institut Henri Poincaré, 1935; pp 177-222.
    18. Landau, L. D., On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 1937, 11, 19.
    19. Evans, J.; Thiel, P.; Bartelt, M. C., Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface science reports 2006, 61 (1-2), 1-128.
    20. Hsieh, Y.-P.; Shih, C.-H.; Chiu, Y.-J.; Hofmann, M., High-throughput graphene synthesis in gapless stacks. Chemistry of Materials 2016, 28 (1), 40-43.
    21. Chin, H.-T.; Nguyen, H.-T.; Chen, S.-H.; Chen, Y.-F.; Chen, W.-H.; Chou, Z.-Y.; Chu, Y.-H.; Yen, Z.-L.; Ting, C.-C.; Hofmann, M., Reaction-limited graphene CVD surpasses silicon production rate. 2D Materials 2021, 8 (3), 035016.
    22. Seah, C.-M.; Chai, S.-P.; Mohamed, A. R., Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014, 70, 1-21.
    23. McLellan, R. B., The solubility of carbon in solid gold, copper, and silver. Scripta Metallurgica 1969, 3 (6), 389-391.
    24. López, G. A.; Mittemeijer, E. J., The solubility of C in solid Cu. Scripta Materialia 2004, 51 (1), 1-5.
    25. Li, Q.; Chou, H.; Zhong, J.-H.; Liu, J.-Y.; Dolocan, A.; Zhang, J.; Zhou, Y.; Ruoff, R. S.; Chen, S.; Cai, W., Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano letters 2013, 13 (2), 486-490.
    26. Nie, S.; Wu, W.; Xing, S.; Yu, Q.; Bao, J.; Pei, S.-s.; McCarty, K. F., Growth from below: bilayer graphene on copper by chemical vapor deposition. New Journal of Physics 2012, 14 (9), 093028.
    27. Bao, M.-H., Micro mechanical transducers: pressure sensors, accelerometers and gyroscopes. Elsevier: 2000.
    28. Lee, J.; Ha, T.-J.; Li, H.; Parrish, K. N.; Holt, M.; Dodabalapur, A.; Ruoff, R. S.; Akinwande, D., 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS nano 2013, 7 (9), 7744-7750.
    29. Bae, S.-H.; Lee, Y.; Sharma, B. K.; Lee, H.-J.; Kim, J.-H.; Ahn, J.-H., Graphene-based transparent strain sensor. Carbon 2013, 51, 236-242.
    30. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574-578.
    31. Liu, W. D.; Yang, L.; Chen, Z. G.; Zou, J., Promising and eco‐friendly Cu2X‐based thermoelectric materials: progress and applications. Advanced Materials 2020, 32 (8), 1905703.
    32. Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J., Copper ion liquid-like thermoelectrics. Nature materials 2012, 11 (5), 422-425.
    33. Zhao, K.; Qiu, P.; Shi, X.; Chen, L., Recent advances in liquid‐like thermoelectric materials. Advanced Functional Materials 2020, 30 (8), 1903867.
    34. He, Y.; Zhang, T.; Shi, X.; Wei, S.-H.; Chen, L., High thermoelectric performance in copper telluride. NPG Asia Materials 2015, 7 (8), e210-e210.
    35. Zhao, K.; Liu, K.; Yue, Z.; Wang, Y.; Song, Q.; Li, J.; Guan, M.; Xu, Q.; Qiu, P.; Zhu, H., Are Cu2Te‐Based Compounds Excellent Thermoelectric Materials? Advanced Materials 2019, 31 (49), 1903480.
    36. Mehta, R. J.; Zhang, Y.; Karthik, C.; Singh, B.; Siegel, R. W.; Borca-Tasciuc, T.; Ramanath, G., A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature materials 2012, 11 (3), 233-240.
    37. Sarkar, S.; Sarswat, P. K.; Saini, S.; Mele, P.; Free, M. L., Synergistic effect of band convergence and carrier transport on enhancing the thermoelectric performance of Ga doped Cu2Te at medium temperatures. Scientific reports 2019, 9 (1), 1-15.
    38. Ju, H.; Park, D.; Kim, M.; Kim, J., Copper telluride with manipulated carrier concentrations for high-performance solid-state thermoelectrics. Journal of Materials Science & Technology 2022.
    39. Ballikaya, S.; Chi, H.; Salvador, J. R.; Uher, C., Thermoelectric properties of Ag-doped Cu 2 Se and Cu 2 Te. Journal of Materials Chemistry A 2013, 1 (40), 12478-12484.
    40. Zhou, C.; Dun, C.; Wang, Q.; Wang, K.; Shi, Z.; Carroll, D. L.; Liu, G.; Qiao, G., Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Applied Materials & Interfaces 2015, 7 (38), 21015-21020.
    41. Qian, K.; Gao, L.; Li, H.; Zhang, S.; Yan, J.; Liu, C.; Wang, J.; Qian, T.; Ding, H.; Zhang, Y., Epitaxial growth and air-stability of monolayer Cu2Te. Chinese Physics B 2020, 29 (1), 018104.
    42. Feng, J.; Gao, H.; Li, T.; Tan, X.; Xu, P.; Li, M.; He, L.; Ma, D., Lattice-Matched Metal–Semiconductor Heterointerface in Monolayer Cu2Te. ACS nano 2021, 15 (2), 3415-3422.
    43. Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials 2014, 26 (22), 6371-6379.
    44. Ju, M.; Liang, X.; Liu, J.; Zhou, L.; Liu, Z.; Mendes, R. G.; Rümmeli, M. H.; Fu, L., Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chemistry of Materials 2017, 29 (14), 6095-6103.
    45. Cai, Z.; Lai, Y.; Zhao, S.; Zhang, R.; Tan, J.; Feng, S.; Zou, J.; Tang, L.; Lin, J.; Liu, B., Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. National science review 2021, 8 (3), nwaa115.
    46. Chang, M.-C.; Ho, P.-H.; Tseng, M.-F.; Lin, F.-Y.; Hou, C.-H.; Lin, I.; Wang, H.; Huang, P.-P.; Chiang, C.-H.; Yang, Y.-C., Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nature communications 2020, 11 (1), 1-9.
    47. Koma, A., Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216 (1), 72-76.
    48. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.
    49. Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J., van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters 2012, 12 (6), 2784-2791.
    50. Piccinini, G.; Forti, S.; Martini, L.; Pezzini, S.; Miseikis, V.; Starke, U.; Fabbri, F.; Coletti, C., Deterministic direct growth of WS2 on CVD graphene arrays. 2D Materials 2019, 7 (1), 014002.
    51. Shi, X.-L.; Zou, J.; Chen, Z.-G., Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews 2020, 120 (15), 7399-7515.
    52. Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F., Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Scientific reports 2013, 3 (1), 1-9.
    53. Smith, A.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P., Electromechanical piezoresistive sensing in suspended graphene membranes. Nano letters 2013, 13 (7), 3237-3242.
    54. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano 2011, 5 (7), 6069-6076.
    55. Jacquet, P. A., On the Anodic Behavior of Copper in Aqueous Solutions of Orthophosphoric Acid. Transactions of The Electrochemical Society 1936, 69 (1), 629.
    56. Nalini, S.; Thomas, S.; Jayaraj, M. K.; Sudarsanakumar, C.; Kumar, K. R., Chemical vapour deposited graphene: substrate pre-treatment, growth and demonstration as a simple graphene-based SERS substrate. Bulletin of Materials Science 2020, 43 (1), 133.
    57. Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z., Chemical vapour deposition. Nature Reviews Methods Primers 2021, 1 (1), 1-20.
    58. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
    59. Binnig, G.; Quate, C. F.; Gerber, C., Atomic Force Microscope. Physical Review Letters 1986, 56 (9), 930-933.
    60. Abdullah, A.; Mohammed, A., Scanning Electron Microscopy (SEM): A Review. 2019.
    61. Das, P. Optical Properties of Low Dimensional Structures Using Cathodoluminescence in a High Resolution Scanning Electron Microscope. 2014.
    62. Kikuchi, S., Diffraction of cathode rays by mica. Proceedings of the Imperial Academy 1928, 4 (6), 271-274.
    63. Huang, K. Towards the modelling of recrystallization phenomena in multi-pass conditions: application to 304L steel. École Nationale Supérieure des Mines de Paris, 2011.
    64. Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M., Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS nano 2012, 6 (10), 9110-9117.
    65. Hsieh, Y.-P.; Chen, D.-R.; Chiang, W.-Y.; Chen, K.-J.; Hofmann, M., Recrystallization of copper at a solid interface for improved CVD graphene growth. RSC advances 2017, 7 (7), 3736-3740.
    66. Gaskell, P. E.; Skulason, H. S.; Rodenchuk, C.; Szkopek, T., Counting graphene layers on glass via optical reflection microscopy. Applied Physics Letters 2009, 94 (14), 143101.
    67. Yan, K.; Peng, H.; Zhou, Y.; Li, H.; Liu, Z., Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters 2011, 11 (3), 1106-1110.
    68. Lai, Y.-Y.; Chuang, C.-H.; Yeh, Y.-W.; Hou, C.-H.; Hsu, S.-C.; Chou, Y.; Chou, Y.-C.; Kuo, H.-C.; Wu, Y. S.; Cheng, Y.-J., Substrate lattice-guided MoS2 crystal growth: implications for van der Waals epitaxy. ACS Applied Nano Materials 2021, 4 (5), 4930-4938.
    69. Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials 2012, 24 (17), 2320-2325.
    70. Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y.; Zhou, C., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS nano 2015, 9 (6), 6119-6127.
    71. Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X., Unveiling the Growth Mechanism of MoS2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Crystal Growth & Design 2018, 18 (2), 1012-1019.
    72. Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H.-W.; Koo, B.; Kim, S.-I.; Nam, T.; Byun, K., Graphene as an atomically thin barrier to Cu diffusion into Si. Nanoscale 2014, 6 (13), 7503-7511.
    73. Li, L.; Chen, X.; Wang, C.-H.; Cao, J.; Lee, S.; Tang, A.; Ahn, C.; Singha Roy, S.; Arnold, M. S.; Wong, H.-S. P., Vertical and lateral copper transport through graphene layers. ACS nano 2015, 9 (8), 8361-8367.
    74. Frank, O.; Vejpravova, J.; Kavan, L.; Kalbac, M., Raman spectroscopy investigation of defect occurrence in graphene grown on copper single crystals. physica status solidi (b) 2013, 250 (12), 2653-2658.
    75. Ma, Z.; Wang, S.; Deng, Q.; Hou, Z.; Zhou, X.; Li, X.; Cui, F.; Si, H.; Zhai, T.; Xu, H., Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a‐plane sapphire. Small 2020, 16 (16), 2000596.
    76. Cho, H.; Park, Y.; Kim, S.; Ahn, T.; Kim, T.-H.; Choi, H. C., Specific stacking angles of bilayer graphene grown on atomic-flat and-stepped Cu surfaces. npj 2D Materials and Applications 2020, 4 (1), 1-6.
    77. Yin, L.; Cheng, R.; Wen, Y.; Zhai, B.; Jiang, J.; Wang, H.; Liu, C.; He, J., High‐Performance Memristors Based on Ultrathin 2D Copper Chalcogenides. Advanced Materials 2022, 34 (9), 2108313.
    78. Mukherjee, S.; Parasuraman, R.; Umarji, A. M.; Rogl, G.; Rogl, P.; Chattopadhyay, K., Effect of Fe alloying on the thermoelectric performance of Cu2Te. Journal of Alloys and Compounds 2020, 817, 152729.
    79. Zhang, L.; Ai, Z.; Jia, F.; Liu, L.; Hu, X.; Yu, J. C., Controlled hydrothermal synthesis and growth mechanism of various nanostructured films of copper and silver tellurides. Chemistry–A European Journal 2006, 12 (15), 4185-4190.
    80. Choi, J. E.; Yoo, J.; Lee, D.; Hong, Y. J.; Fukui, T., Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene. Applied Physics Letters 2018, 112 (14), 142101.
    81. Kraemer, D.; Chen, G., High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices. Review of Scientific Instruments 2014, 85 (4), 045107.
    82. Anno, Y.; Imakita, Y.; Takei, K.; Akita, S.; Arie, T., Enhancement of graphene thermoelectric performance through defect engineering. 2D Materials 2017, 4 (2), 025019.
    83. Park, D.; Ju, H.; Oh, T.; Kim, J., Fabrication of one-dimensional Cu 2 Te/Te nanorod composites and their enhanced thermoelectric properties. CrystEngComm 2019, 21 (10), 1555-1563.
    84. Liu, Y.; Zhang, D.; Wang, K.; Liu, Y.; Shang, Y., A novel strain sensor based on graphene composite films with layered structure. Composites Part A: Applied Science and Manufacturing 2016, 80, 95-103.

    無法下載圖示 電子全文延後公開
    2027/07/15
    QR CODE