簡易檢索 / 詳目顯示

研究生: 蘇泰龍
SU, Tai-Lung
論文名稱: 矽單層在銀薄膜上的表面形貌與能譜分析
STS results and STM images of the silicene superstructrue on the Ag(111)/Si(111) surface
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 50
中文關鍵詞: 矽單層銀薄膜STMLEED
英文關鍵詞: silicene, silver thin film, silicon, STM, LEED
DOI URL: https://doi.org/10.6345/NTNU202203868
論文種類: 學術論文
相關次數: 點閱:62下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在文獻中得知可以在單晶金屬表面上成長矽單層結構,在本實驗中Si(111)-(7×7)表面上成長6 ML的Ag(111)薄膜取代單晶銀塊材,然後在成長矽單層結構在銀薄膜上。首先將矽基板經過Flash與熱退火的步驟製成Si(111)-(7×7),然後降至100 K後鍍上6 ML的銀,溫度回到室溫在加熱退火至570 K,等樣品緩慢降至室溫就完成銀薄膜的製備,接著成長矽單層。
      要成長矽單層,基底需要維持在500 K以上,在本實驗選擇將銀薄膜維持在550 K,鍍上1 ML的矽,就完成矽單層的製作。在此溫度製備完成的矽單層,可以用STM觀察到四種矽單層結構,分別是4×4、 、兩種 結構,除了結構上再加上STS結果,比較後發現並無差異。
      因為基底並非銀塊材,所以用LEED觀察後發現Ag(1×1)會發生錯位,用STM觀察也得到相同的結果,並發現銀薄膜的錯位對矽單層的STS結果並無影響。
      但當銀薄膜的厚度不同,會表現不同的特性,在6 ML的銀薄膜上鍍矽可發現矽單層,但在1 ML的銀薄膜上鍍矽卻沒有矽單層,推測鍍上去的矽與銀發生翻轉而往下埋入成為矽基板的一部分,所以6 ML的銀薄膜確實可用來代替銀塊材。

    From previous study, we know that we can grow silicene on the metal surface. In this experiment, we grow 6 ML of Ag (111) on Si (111) - (7 × 7) to substituted single-crystal silver bulk, then grow silicene on the silver film. First, we anneal and flash the silicon substrate to form Si (111) - (7 × 7) structure. then deposited 6 ML silver on Si (111) - (7 × 7) structure at 100 K. We warm the sample up to room temperature. Afterward, we anneal the sample to 570 K. Further, we cool down the sample to room temperature. Finally, we complete the preparation of the silver thin film.
    To Growing the silicene, we need to heat the silver thin film over 500 K. In this experiment, we keep the silver thin film at 550 K and deposit 1 ML Si on it. When the sample cool down, we finish the production of silicene. We can find 4 different silicene structures by STM. They are 4×4 , and two structure. These 4 structure’s STS result are similar.
    Because we choose silver thin film replace silver bulk. So we can find Ag(1×1) dislocation by LEED . And we also can find same result by STM. But Ag(1×1) dislocation don’t affect STS result.
    Different thickness of the silver thin film will show different characteristics. We can find silicene on 6 ML silver thin film, but don’t find silicene on 1 ML silver thin film. So we can use 6 ML silver thin film replace silver bulk.

    目錄 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv LIST OF FIGURES vii LIST OF TABLES x 第1章 緒論 1 第2章 實驗原理 3 2.1 基本原理 3 2.1.1 穿隧效應 3 2.1.2 侷域電子態密度 5 2.2 STM操作原理 6 2.2.1 定電流模式 7 2.3 LEED原理 8 第3章 實驗儀器 11 3.1 實驗儀器簡介 11 3.2 超高真空系統[14, 15] 12 3.3 真空幫浦[15] 12 3.3.1 油封式機械幫浦[16] 13 3.3.2 渦輪分子幫浦[14] 14 3.3.3 離子幫浦[14] 15 3.3.4 鈦昇華幫浦[14, 15, 17] 16 3.4 真空壓力計[14, 18] 17 3.5 蒸鍍系統 18 3.5.1 K-Cell 蒸鍍槍[14, 15, 19] 18 3.5.2 電子束蒸鍍槍[14, 15, 20] 19 3.6 掃描穿隧顯微鏡[21, 22] 20 3.6.1 掃瞄頭 20 3.6.2 步進器 21 3.6.3 避震裝置與掃描平台 21 3.7 低能量電子繞射儀[22] 22 第4章 實驗流程 24 4.1 STM探針製作 24 4.2 建立超高真空系統 27 4.3 矽基板的清潔 28 4.4 Ag(1×1)薄膜製備 29 4.5 在Ag(1×1)薄膜上長矽單層 30 第5章 實驗數據討論 31 5.1 矽單層結構介紹 31 5.1.1 4×4矽單層 31 5.1.2 矽單層 33 5.1.3 type 1 35 5.1.4 type 2 37 5.1.5 STS結果比較 39 5.2 銀基底的錯位 39 5.2.1 矽單層觀察銀基底錯位 41 5.2.2 矽單層 單位晶格旋轉角度的統計 42 5.2.3 不同夾角4×4STS比較 44 5.3 矽單層在不同厚度銀薄膜的STS比較 45 第6章 結論 47 REFERENCE 49

    [1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater, 6 (2007) 183-191.
    [2] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Physical Review Letters, 102 (2009) 236804.
    [3] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Physical Review Letters, 108 (2012) 155501.
    [4] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental Evidence for Epitaxial Silicene on Diboride Thin Films, Physical Review Letters, 108 (2012) 245501.
    [5] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.-J. Gao, Buckled Silicene Formation on Ir(111), Nano Letters, 13 (2013) 685-690.
    [6] D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Local Electronic Properties of Corrugated Silicene Phases, Advanced Materials, 24 (2012) 5088-5093.
    [7] H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray, J.P. Bibérian, Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature, Journal of Physics: Condensed Matter, 24 (2012) 172001.
    [8] L. Chun-Liang, A. Ryuichi, K. Kazuaki, T. Noriyuki, M. Emi, K. Yousoo, T. Noriaki, K. Maki, Structure of Silicene Grown on Ag(111), Applied Physics Express, 5 (2012) 045802.
    [9] A. Pal, J.C. Mahato, B.N. Dev, D.K. Goswami, Roughening in Electronic Growth of Ag on Si(111)-(7×7) Surfaces, ACS Applied Materials & Interfaces, 5 (2013) 9517-9521.
    [10] C.H. Mullet, S. Chiang, High temperature growth of Ag phases on Ge (111), Journal of Vacuum Science & Technology A, 31 (2013) 020602.
    [11] J.C. Vickerman, I.S. Gilmore, Surface analysis: the principal techniques, Wiley Online Library.
    [12] K.W. Kolasinski, K.K. Kolasinski, Surface science: foundations of catalysis and nanoscience, John Wiley & Sons2012.
    [13] C. Kittel, Introduction to solid state, John Wiley & Sons1966.
    [14] 蘇青森, 真空技術精華, 台灣五南圖書出版股份有限公司2015.
    [15] 陳建人, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版, 民國九十年, (2001).
    [16] Alcatel, User's manual, High Vacuum Technology, 1998.
    [17] V. Generators, Operating and Maintenance Handbook ST22 Titanium Sublimation Pump Cartridge,, 2002.
    [18] A. Microelectronics, UHV Bayard-Alpert Gauge Manual, 2012.
    [19] Vacweld, Vacweld Miniature K-cell Effusion Source Operator’s Handbook, 2003.
    [20] Omicron, Instruction Manual UHV Evaporator EFM3/4 Triple Evaporator EFM3T, 1999.
    [21] 國科會精儀中心, 表面分析儀器, 1998.
    [22] Omicron, Instruments for Surface Science, 2000.
    [23] D. Goswami, K. Bhattacharjee, B. Satpati, S. Roy, P. Satyam, B. Dev, Preferential heights in the growth of Ag islands on Si (111)-(7× 7) surfaces, Surface science, 601 (2007) 603-608.
    [24] Z.-L. Liu, M.-X. Wang, J.-P. Xu, J.-F. Ge, G. Le Lay, P. Vogt, D. Qian, C.-L. Gao, C. Liu, J.-F. Jia, Various atomic structures of monolayer silicene fabricated on Ag (111), New Journal of Physics, 16 (2014) 075006.
    [25] A. Resta, T. Leoni, C. Barth, A. Ranguis, C. Becker, T. Bruhn, P. Vogt, G. Le Lay, Atomic structures of silicene layers grown on Ag (111): scanning tunneling microscopy and noncontact atomic force microscopy observations, Scientific reports, 3 (2013).
    [26] B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag (111), Nano letters, 12 (2012) 3507-3511.
    [27] P. Moras, T. Mentes, P. Sheverdyaeva, A. Locatelli, C. Carbone, Coexistence of multiple silicene phases in silicon grown on Ag (1 1 1), Journal of Physics: Condensed Matter, 26 (2014) 185001.
    [28] C. Grazianetti, D. Chiappe, E. Cinquanta, G. Tallarida, M. Fanciulli, A. Molle, Exploring the morphological and electronic properties of silicene superstructures, Applied Surface Science, 291 (2014) 109-112.

    下載圖示
    QR CODE