簡易檢索 / 詳目顯示

研究生: 涂孟萱
Tu, Meng-Shiuan
論文名稱: 硫辛酸抑制NLRP3發炎體活化而減緩高脂飲食及STZ誘發第二型糖尿病大鼠內臟脂肪組織發炎反應之研究
Alpha-lipoic acid alleviates inflammation in visceral adipose tissues of high-fat-diet and streptozotocin-induced Type 2 diabetic rats via suppressing NLRP3 inflammasome activation
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
丁俞文
Ting, Yu-Wen
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 第二型糖尿病內臟脂肪組織發炎反應NLRP3發炎體
英文關鍵詞: type 2 diabetes, NLRP3 inflammasome, visceral adipose tissue, inflammation
DOI URL: https://doi.org/10.6345/NTNU202202269
論文種類: 學術論文
相關次數: 點閱:73下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型糖尿病(T2DM)與肥胖有密切關係,當營養過剩導致肥胖,此時脂肪細胞內的發炎訊息傳遞路徑活化,增加促發炎細胞激素的產生,造成胰島素阻抗。近年研究發現,細胞內的NLRs (nucleotide-binding and oligomerization domain (NOD)-like receptors)會辨識細胞質內與肥胖相關的危險信號分子,如體內脂質代謝產物,造成促發炎細胞激素IL-1β和IL-18的成熟和釋放,被認為干擾胰島素信號傳遞而導致胰島素阻抗。硫辛酸(Alpha-lipoic acid, ALA)是一個主要由粒線體合成的有機硫化合物,除了參與細胞能量代謝以外還具有抗氧化性質,被認為是發炎信號傳遞路徑的重要調節因子。本研究欲探討硫辛酸對高脂飲食及STZ (streptozotocin)誘發第二型糖尿病大鼠脂肪組織發炎反應、脂肪組織中NLRP3發炎體及其訊息傳遞路徑相關因子之影響。給予雄性Wistar大鼠高脂飲食(60%脂肪熱量)四周後腹腔注射STZ (30mg/kg)誘導T2DM,隨後繼續給予高脂飲食且投以ALA持續13周。結果顯示,T2DM大鼠連續13周給予ALA (200mg/kg BW)後可顯著降低其46.8%的內臟脂肪(副睪脂肪及副腎脂肪)重量(p<0.05);給予PIO30mg/kg、ALA50mg/kg、ALA100mg/kg、ALA200mg/ kg BW組之總膽固醇(Total cholesterol, TC)、總三酸甘油酯(Total glyceride, TG)、游離脂肪酸(free fatty acid, FFA)濃度相較於DM顯著降低 (p<0.05);高密度脂蛋白膽固醇(high density lipoprotein cholesterol, HDL-C)濃度則分別提升15.5%、19.2%、37.9%、68.2%。另外餵食ALA200mg/kg BW觀察到可減少T2DM大鼠47.9%之血中低密度脂蛋白膽固醇(low density lipoprotein cholesterol, LDL-C)濃度。西方墨點法結果顯示,DM+ALA200組的JNK1 (c-Jun N-terminal kinases)表現量與DM組相比下減少32.9%;DM+ALA50組、DM+ALA100組與DM+ALA200組之ASC蛋白表現量比DM組之表現量(1.35±0.29)分別減少37.6%、23.4%、35.1%;在Pro-caspase-1方面,DM+ALA200組顯著低於DM組47.6% (p<0.05);在Active caspase-1表現量方面,與DM組相比則是DM+ALA100、DM+ALA200分別減少52.7%、36.1%;在IL-1β的表現量則是DM+ALA200組與DM組比較下,減少了29.4%。上述結果顯示,ALA可有效減少脂肪組織中JNK1生成,推測原因可能為降低促發炎細胞激素前驅物Pro-IL-1β之轉錄;另外,ALA可減少T2DM大鼠血中FFA、LDL-C、TC,因此降抑制NLRP3 inflammation危險因子的活化而減少下游之ASC、Pro-caspase-1、Active caspase-1、IL-1β表現量,因此減緩脂肪組織發炎反應。

    Excess high calorie intake accelerates the development of obesity, which increases the risk of insulin resistance and pro-inflammatory cytokines production that attributed to the activation of inflammatory signaling pathway in adipocytes. In recent years, studies indicate that intracellular NLRs (nucleotide-binding and oligomerization domain (NOD)-like receptors) can identify obesity associated protein, resulting in maturation and release of IL-1β and IL-18, is considered to interfere with insulin signaling. Alpha-lipoic acid (ALA) is an organic sulfur compound ant it is considered an important regulatory factor of inflammatory signaling. We investigate the effects of ALA on the inflammation in adipose tissue, the expression of NLRP3 in the adipose tissue and the related factors of the inflammatory signaling pathway. Male Wistar rats were given HFD (60% fat of calorie) for 4 weeks followed by intraperitoneal (i.p.) injection of STZ (30mg/kg) to induce T2DM. These rats were continuously received HFD and then orally administered with 200 mg/kg ALA once a day for 13 weeks. After rats were sacrificed, the biochemistry analysis was conducted. T2DM rats significantly reduced the weight of visceral adipose tissue (epididymal adipose tissue and perirenal adipose tissue) by 46.8% after treated with ALA (200 mg / kg B.W.) for 13 weeks (p<0.05). The TC concentration of ALA 200mg / kg BW was significantly lower than DM group by 38.9% (p<0.05), the concentrations of TG was significantly decreased by 58.5%, (p<0.05); the concentration of FFA was significantly decreased by 51.8% (p<0.05), The HDL-C concentrations was significantly increased by 68.2%; In the ALA200 group, LDL-C concentration was reduced by 47.87%. The results of Western blotting shows that the expression of JNK1 in DM + ALA200 group was decreased 32.9% compared with DM group. The expression of ASC protein in DM + ALA50 group, DM + ALA100 group and DM + ALA200 group was decreased 37.6%, 23.4% and 35.1% compared with DM group (1.35 ± 0.29). Furthermore, the expressions of Pro-caspase-1 in DM+ALA200 group was significantly lower than DM group (p<0.05). Compared with DM group, the expressions of Active caspase-1 in DM + ALA100 and DM + ALA200 were decreased by 52.7% and 36.1%, respectively. Finally, the expression of IL-1β in DM + ALA200 group was decreased by 29.4% compared with DM group. In conclusion, we suppose that ALA decreases the expression of JNK1 via suppressing the transcription of the Pro-IL-1β in adipose tissue of T2DM rats. Moreover, ALA also decreases the expression of ASC, Pro-caspase-1 and Active caspase-1 as well as IL-1β level, thus inhibits the activation of NLRP3 inflammasome and alleviates the adipose tissue inflammation in adipose tissue of T2DM rats as consequence.

    中文摘要 ii 英文摘要 iii 圖次 vi 表次 viii 第一章 前言 1 第二章 文獻回顧 2 第一節 糖尿病 2 一、糖尿病簡介 2 二、胰島素簡介 2 三、糖尿病分類 3 四、糖尿病診斷方法 5 第二節 肥胖 7 一、肥胖的定義與形成原因 7 二、肥胖流行病學 7 三、脂肪組織 8 四、肥胖與代謝性疾病 10 五、代謝性發炎反應(metaflammation) 11 第三節 NLRP3發炎體 12 一、NOD-like receptor (NLRs) 12 二、NLRP3發炎體結構及活化機制 13 三、NLRP3發炎體與肥胖 16 第四節 硫辛酸 17 一、硫辛酸特性 17 二、硫辛酸與第二型糖尿病 18 三、硫辛酸的治療潛力 19 第三章 研究動機與實驗架構 20 第一節 研究動機 20 第二節 實驗架構 21 第四章 實驗之材料與方法 22 第一節 實驗材料 22 第二節 實驗設備 24 第三節 實驗方法 25 第五章 結果與討論 32 第一節 硫辛酸對第二型糖尿病大鼠生理之影響 32 第二節 硫辛酸對第二型糖尿病大鼠血糖調節功能之影響 38 第三節 硫辛酸對第二型糖尿病大鼠血清脂質之影響 43 第四節 硫辛酸對胰島素訊息傳遞相關蛋白表現量之影響 45 第五節 硫辛酸對NLRP3發炎體訊息傳遞相關蛋白表現量之影響 48 第六章 結語 58 第七章 參考文獻 59

    ADA. (2017). Standards of Medical Care in Diabetes -2017(Vol. Volume 40): American Diabetes Association.
    Alberti, K. G. M. M., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine, 15(7), 539–553.
    Bhargava, P., & Lee, C. (2012). Role and function of macrophages in the metabolic syndrome. Biochemical Journal, 442(2), 253–262.
    Biewenga, G., Haenen, G., & Bast, A. (1997). The pharmacology of the antioxidant lipoic acid. General Pharmacology: The Vascular System, 29(3), 315–331.
    Chen, W., Kang, C., Wang, G., & Lee, H. (2012). Α-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of aMP-activated protein kinase. Diabetologia, 55(6), 1824–1835.
    Dandona, P., Aljada, A., Chaudhuri, A., Mohanty, P., & Garg, R. (2005). Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 111(11), 1448–1454.
    De Nardo, D., & Latz, E. (2011). NLRP3 inflammasomes link inflammation and metabolic disease. Trends in Immunology, 32(8), 373–379.
    Deiuliis, J., Kampfrath, T., Ying, Z., Maiseyeu, A., & Rajagopalan, S. (2011). Lipoic acid Attenuates innate immune infiltration and activation in the visceral Adipose tissue of obese insulin resistant mice. Lipids, 46(11), 1021–1032.
    Dinarello, C. A. (2009). Immunological and inflammatory functions of the Interleukin-1 family. Annual Review of Immunology, 27(1), 519–550.
    Doyle, S., Ozaki, E., & Campbell, M. (2015). Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. Journal of Inflammation Research.
    Feingold, K., & Grunfeld, C. (1992). Role of Cytokines in inducing Hyperlipidemia. Diabetes, 41(Supplement_2), 97–101.
    Fernández-Galilea, M., Prieto-Hontoria, P., Martínez, J., & Moreno-Aliaga, M. (2013). Antiobesity effects of α-lipoic acid supplementation. Clinical Lipidology, 8(3), 371–383.
    Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., & Klein, S. (2007). Visceral fat Adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56(4), 1010–1013.
    Grant, R., & Dixit, V. (2013). Mechanisms of disease: Inflammasome activation and the development of type 2 diabetes. Frontiers in Immunology, 4-50..
    Gregor, M., & Hotamisligil, G. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29(1), 415–445.
    Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9(5), 367–377.
    Guo, H., Callaway, J., & Ting, J. (2015). Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature Medicine, 21(7), 677–687.
    Guo, J., Gao, S., Liu, Z., Zhao, R., & Yang, X. (2016). Alpha-Lipoic acid alleviates acute inflammation and promotes lipid mobilization during the inflammatory response in white Adipose tissue of mice. Lipids, 51(10), 1145–1152.
    Gupta, OT., & Gupta, RK. (2015). Visceral Adipose tissue Mesothelial cells: Living on the edge or just taking up space? Trends in Endocrinology & Metabolism, 26(10), 515–523.
    Harding, S., Rideout, T., & Jones, P. (2012). Evidence for using Alpha-Lipoic acid in reducing Lipoprotein and inflammatory related Atherosclerotic risk. Journal of Dietary Supplements, 9(2), 116–127.
    Hossain, P., Kawar, B., & El Nahas, M. (2007). Obesity and diabetes in the developing world — A growing challenge. New England Journal of Medicine, 356(3), 213–215.
    Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J. (2007). Interleukin-1β-induced insulin resistance in Adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148(1), 241–251.
    Janoudi, A., Shamoun, F., Kalavakunta, J., & Abela, G. (2015). Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. European Heart Journal, 37(25), 1959–1967.
    Jo, E., Kim, J., Shin, D., & Sasakawa, C. (2015). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular and Molecular Immunology, 13(2), 148–159.
    Kim, Y., Shin, J., & Nahm, M. (2016). NOD-like receptors in infection, immunity, and diseases. Yonsei Medical Journal, 57(1), 5.
    Lee, J. (2013). Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes. Archives of Pharmacal Research, 36(2), 208–222.
    Lee, H., Lee, Y., Chung, Y., Nam, Y., Kim, S., Park, E., Hong, SM., Yang, YK., Kim, HC., & Jeong, J. (2015). Beneficial effects of red yeast rice on high-fat diet-induced obesity, Hyperlipidemia, and fatty liver in mice. Journal of Medicinal Food, 18(10), 1095–1102.
    Lee, YS., Li, P., Huh, JY., Hwang, IJ., Lu, M., Kim, JI., Ham, M., Talukdar, S., Chen, A., Lu, WJ., Bandyopadhyay, GK., Schwendener, R., Olefsky, J., & Kim, JB. (2011). Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes, 60(10), 2474–2483.
    Legrand-Poels, S., Esser, N., L’homme, L., Scheen, A., Paquot, N., & Piette, J. (2014). Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochemical Pharmacology, 92(1), 131–141.
    Lyons, C., Kennedy, E., & Roche, H. (2016). Metabolic inflammation-differential modulation by dietary constituents. Nutrients, 8(5), 247.
    Pradhan, A. (2008). Obesity, metabolic syndrome, and type 2 diabetes: Inflammatory basis of glucose metabolic disorders. Nutrition Reviews, 65, S152–S156.
    Reynolds, C., McGillicuddy, F., Harford, K., Finucane, O., Mills, K., & Roche, H. (2012). Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Molecular Nutrition & Food Research, 56(8), 1212–1222.
    Riedl, S., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology, 5(11), 897–907.
    Rudich, A., Tirosh, A., Potashnik, R., Khamaisi, M., & Bashan, N. (1999). Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia, 42(8), 949–957.
    Schroder, K., & Tschopp, J. (2010). The Inflammasomes. Cell, 140(6), 821–832.
    Stienstra, R., van Diepen, J., Tack, C., Zaki, M., van de Veerdonk, Fl., Perera, D., Neale, GA., Hooiveld, GJ., Hijmans, A., Vroegrijk, I., van den Berg, S., Romijn, J., Rensen, PC., Joosten, LA., Netea, MG., & Kanneganti, T. (2011). Inflammasome is a central player in the induction of obesity and insulin resistance. Proceedings of the National Academy of Sciences, 108(37), 15324–15329.
    Tateya, S., Kim, F., & Tamori, Y. (2013). Recent advances in obesity-induced inflammation and insulin resistance. Frontiers in Endocrinology, 4, . doi:10.3389/fendo.2013.00093
    Tilg, H., & Moschen, A. R. (2006). Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, 6(10), 772–783.
    Vandanmagsar, B., Youm, Y., Ravussin, A., Galgani, J., Stadler, K., Mynatt, R., Ravussin, E., Stephens, JM., & Dixit, V. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine, 17(2), 179–188.
    Wang, X., He, G., Peng, Y., Zhong, W., Wang, Y., & Zhang, B. (2015). Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Scientific Reports, 5, 12676.
    Watanabe, Y., Nagai, Y., & Takatsu, K. (2013). Activation and regulation of the pattern recognition receptors in obesity-induced Adipose tissue inflammation and insulin resistance. Nutrients, 5(9), 3757–3778.
    Weber, C., & Noels, H. (2011). Atherosclerosis: Current pathogenesis and therapeutic options. Nature Medicine, 17(11), 1410–1422.
    Weber, K., & Schilling, J. D. (2014). Lysosomes integrate metabolic-inflammatory cross-talk in primary Macrophage Inflammasome activation. Journal of Biological Chemistry, 289(13), 9158–9171.
    Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Frontiers in Bioscience, 2(4), d12–26.
    Yang, R., Shi, Y., Hao, G., Li, W., & Le, G. (2008). Increasing Oxidative stress with progressive Hyperlipidemia in human: Relation between Malondialdehyde and Atherogenic index. Journal of Clinical Biochemistry and Nutrition, 43(3), 154–158.
    Yaworsky, K., Somwar, R., Ramlal, T., Tritschler, H., & Klip, A. (2000). Engagement of the insulin-sensitive pathway in the stimulation of glucose transport by α-lipoic acid in 3T3-L1 adipocytes. Diabetologia, 43(3), 294–303.
    Ye, J., Gao, Z., Yin, J., & He, Q. (2007). Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. AJP: Endocrinology and Metabolism, 293(4), E1118–E1128.

    下載圖示
    QR CODE