簡易檢索 / 詳目顯示

研究生: 廖鈺汝
Liao, Yu-Ju
論文名稱: 鈣鈦礦氧化物(SmBaMn2O6)與異質結構(Nd0.35Sr0.65MnO3/YBa2Cu3O7)的光譜性質研究
Optical studies of perovskite oxides (SmBaMn2O6) and heterostructures (Nd0.35Sr0.65MnO3/YBa2Cu3O7)
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 137
中文關鍵詞: Nd0.35Sr0.65MnO3YBa2Cu3O7Nd0.35Sr0.65MnO3/YBa2Cu3O7SmBaMn2O6橢圓偏振光譜拉曼散射光譜
英文關鍵詞: Nd0.35Sr0.65MnO3, YBa2Cu3O7, Nd0.35Sr0.65MnO3/YBa2Cu3O7, SmBaMn2O6, spectroscopic ellipsometry, Raman scattering
DOI URL: https://doi.org/10.6345/NTNU202202012
論文種類: 學術論文
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究鈣鈦礦結構Nd0.35Sr0.65MnO3(NSMO)(30 nm)薄膜、YBa2Cu3O7(YBCO)(40 nm)薄膜、NSMO(30 nm)/YBCO(30 nm)異質結構薄膜材料及雙鈣鈦礦結構SmBaMn2O6單晶之光譜性質。我們使用橢圓偏振光譜探究異質結構薄膜材料與SmBaMn2O6單晶的光學常數與電子傳輸性質,並進一步使用拉曼散射光譜探討SmBaMn2O6單晶的晶格-電荷-自旋多重耦合效應。
      NSMO的室溫光學電導率能譜展現兩個主要的吸收峰,位置分別為1.1 eV和3.7 eV。1.1 eV和3.7 eV分別對應到Mn3+ d→鄰近Mn4+ d及O 2p→Mn 3d軌域之電子躍遷。YBCO的室溫光學電導率能譜譜,有三個主要的吸收峰,分別為3.1 eV、3.8 eV和4.6 eV,3.1 eV對應到O 2p→Cu 3d軌域的電子躍遷,3.8和4.6 eV兩個峰主要為Cu(1) 3d_(3z^2-r^2 )→ 4p_x的電子躍遷。NSMO/YBCO異質結構的吸收峰位置與強度不同於NSMO與YBCO單層薄膜,可能與薄膜應變效應的改變有關,新產生與消失的吸收峰,推測為界面所引起。
      SmBaMn2O6單晶的室溫吸收光譜顯示有三個主要的吸收峰:1.3 eV、3.4 eV及4.2 eV,第一個對應Mn3+ d_(3x^2-r^2 ) 或d_(3y^2-r^2 )→鄰近Mn4+ d軌域之電子躍遷,第二、三個對應O 2p→Mn 3d軌域之電子躍遷。樣品在溫度高於電荷軌道有序轉為無序之相變溫度(TCO1, 370 K)時,X光繞射實驗顯示Jahn-Teller效應減緩,導致d-d電子躍遷能量減小。SmBaMn2O6的拉曼散射光譜有4個主要拉曼峰:196 cm-1、330 cm-1、485 cm-1及614 cm-1,分別為旋轉1、旋轉2、Jahn-Teller扭曲及呼吸振動模,旋轉1及呼吸振動模在溫度高於330 K時消失;溫度低於電荷軌道有序態之相變溫度(TCO2, 200 K)時,Jahn-Teller扭曲及呼吸振動模皆分裂成兩個峰,且整個頻譜多了許多新的拉曼峰,表示有強烈的電荷-軌道耦合及超晶格的產生。

    We studied the optical properties of perovskite Nd0.35Sr0.65MnO3 (30 nm) (NSMO)、YBa2Cu3O7 (40 nm) (YBCO)、NSMO (30 nm)/YBCO (30 nm)heterostructure thin films and double-perovskite SmBaMn2O6 single crystal.We employed the spectroscopic ellipsometry to investigate the optical constants and electronic structures of these materials. Furthermore, we performed Raman scattering study of SmBaMn2O6. The analysis of the temperature evolution of lattice vibrational modes would give important information about lattice-charge-spin interactions.
    Room temperature optical conductivity spectrum of NSMO determined from spectroscopic ellipsometry analysis shows two main bands at about 1.1 eV and 3.7 eV. The absorption peaks of 1.1 eV and 3.7 eV are due to Mn3+ d → its neighbor Mn4+ d and O 2p → Mn 3d charge-transfer transitions, respectively. The optical conductivity spectrum of YBCO determined from spectroscopic ellipsometry analysis shows three main bands at about 3.1 eV, 3.8 eV and 4.6 eV. The 3.1 eV absorption peak is due to charge-transfer transitions between O 2p and Cu 3d states. The 3.8 and 4.6 eV absorption peaks are due to charge-transfer transitions between Cu(1)3d_(3z^2-r^2 )and4p_x. The optical conductivity spectra of NSMO/YBCO heterostructure show changes of the peak position and intensity in comparison with those of the single layers, indicating that strain effect of heterostructure modifies the electronic structures of individual NSMO and YBCO layers. The observed new absorption peaks are possibly due to interface-induced effect.
    Room temperature absorption spectrum of SmBaMn2O6 determined from spectroscopic ellipsometry analysis shows three main bands at about 1.3, 3.4 and 4.2 eV. The first absorption peak is due to Mn3+ d_(3x^2-r^2 ) (or d_(3y^2-r^2 ))→ its neighbor Mn4+ d. The second and third peaks are due to O 2p →Mn 3d charge-transfer transitions. Their positions show redshift at the charge-orbital order-disorder phase transition temperature (TCO1, 370 K). X-ray diffraction data show J-T distortions relax, resulting in a redshift of d-d transitions be lower. Room temperature Raman scattering spectrum of SmBaMn2O6 exhibits four phonon modes at about 196 cm-1, 330 cm-1, 485 cm-1, and 614 cm-1 attributed to the rotationlike mode 1, rotationlike mode 2, Jahn-Teller mode and breathing mode. With increasing temperature, rotationlike mode 1 and breathing mode disappear above 330 K. Jahn-Teller mode and breathing mode show a splitting and many vibrational modes appear below charge-orbital order phase transitiontemperature (TCO2, 200 K), suggesting the strong charge-orbital coupling and the appearance of superstructure.

    中文摘要 i 英文摘要 iii 目錄 v 表目錄 vii 圖目錄 ix 第一章 緒論 1 第二章 研究背景與文獻回顧 5   2-1氧化物R1-xAxMnO3/YBa2Cu3O7的異質結構 5   2-2雙鈣鈦礦錳氧化物RBaMn2O6 7 第三章 實驗儀器設備及其基本原理 17   3-1光譜儀系統 17   3-2光譜儀原理介紹 20    3-2-1拉曼散射光譜原理 20    3-2-2橢圓偏光光譜原理 23   3-3基本的物質材料激發態 31 第四章 實驗樣品特性 37   4-1樣品製程 37   4-2樣品結構 38   4-3樣品物性 40   4-4 SmBaMn2O6的群論計算 42 第五章 實驗結果與討論 57   5-1氧化物薄膜的光譜性質研究 57    5-1-1單層NSMO薄膜的橢圓偏振光譜 58    5-1-2單層YBCO薄膜的橢圓偏振光譜 62    5-1-3NSMO/YBCO雙層薄膜的橢圓偏振光譜 64   5-2 SmBaMn2O6單晶的光譜性質研究 67    5-2-1SmBaMn2O6單晶的橢圓偏振光譜 67 5-2-2 SmBaMn2O6單晶的拉曼散射光譜 70 第六章 結論與未來展望 129 參考文獻 131

    [1] 李言榮、惲正中著,材料物理學概論,五南圖書出版有限公司
    2003 年 6 月。
    [2] 張道宜,鑭鐠鋯錳氧化物的結構及光譜性質研究,長庚大學電
    子研究所碩士論文,民國九十三年六月。
    [3] Jun Zhang, Hidekazu Tanaka, Teruo Kanki, Jae-Hyoung Choi, and Tomoji Kawai, “Strain effect and the phase diagram of La1-xBaxMnO3 thin films”, Phys. Rev. B 64, 184404 (2001).
    [4] S. R. Foltyn, Q. X. Jia, P. N. Arendt, L. Kinder, Y. Fan, and J. F. Smith, “Relationship between film thickness and the critical current of YBa2Cu3O7−δ-coated conductors”, Appl. Phys. Lett. 75, 3692 (1999).
    [5] A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface”, Nature 427, 423 (2004).
    [6] C. Visani, Z. Sefrioui, J. Tornos, C. Leon, J. Briatico, M. Bibes, A. Barthélémy, J. Santamaría, and Javier E. Villegas, “Equal-spin Andreev reflection and long-range coherenttransport in high-temperature superconductor/half-metallicferromagnet junctions”, Nat. Phys. 8, 539-543 (2012).
    [7] F. Millange, V. Caignaert, B. Domenge’s, B. Raveau, and E. Suard, “Order−disorder phenomena in new LaBaMn2O6-x CMR perovskites. crystal and magnetic structure”, Chem. Mater. 10, 1974 (1998).
    [8] Tomohiko Nakajima, Hiroshi Kageyama, Hideki Yoshizawa, Kenji Ohoyama, and Yutaka Ueda, “Ground state properties of the A-site ordered manganites, RBaMn2O6(R = La, Pr and Nd)”, J. Phys. Soc. Jpn. 72, 3237 (2003).
    [9] 葉美君,Fe (Se, Te)超導材料之光譜性質研究,國立臺灣師範大
    學物理研究所碩士論文,民國一零三年六月。
    [10] A. I. Buzdin, “Proximity effects in superconductor-ferromagnet heterostructures”, Rev. Mod. Phys. 77, 935 (2005).
    [11] John Y. T.Wei,“Spin-injection quasiparticle nonequilibrium in cuprate/manganite heterostructures”, J. Supercond. 15, 67 (2002).
    [12] Th. Mühge, K. Theis-Bröhl, K. Westerholt, H. Zabel, N. N.Garif’yanov, Yu. V. Goryunov, I. A. Garifullin, and G. G.Khaliullin, “Influence of magnetism on superconductivity in epitaxial Fe/Nb bilayer systems”, Phys. Rev. B 57, 5071 (1998).
    [13] J. G. Lin, Daniel Hsu, W. F. Wu, C. H. Chiang, and W. C. Chan, “Proximity effect of superconductivity and magnetism in the Nd0.7Ca0.3MnO3/YBa2Cu3O7 bilayer”, J. Appl. Phys. 101, 09G106 (2007).
    [14] Piotr Przyslupski, Ivan Komissarov, Elzbeta Dynowska, Macej Sawicki, Jarek Wosik, and Andrzej Szewczyk, “Structural, transport and magnetic characterization of Nd1-xSrxMnO3/YBa2Cu2O7 heterostructures”, IEEE transactions on applied superconductivity 13, 2853 (2003).
    [15] Daniel Hsu, J. G. Lin,C. P. Chang, C. H. Chen, C. H. Chiang, W. C. Chan, and W. F. Wu,“Thickness dependent spin-injection effects in Nd0.7Ca0.3MnO3/YBa2Cu3O7 bilayers”, J. Appl. Phys. 103, 07C710 (2008).
    [16] Awadhesh Mani, T. Geetha Kumary, and J. G. Lin, “Thickness controlled proximity effects in C-type antiferromagnet/superconductor heterostructure”, Scientific
    Reports 5, 12780 (2015).
    [17] Daniel Hsu, J. G. Lin, C. P. Chang, C. H. Chen, W. F. Wu, C. H. Chiang, and W. C. Chan, “Current enhanced magnetic proximity in Nd0.7Ca0.3MnO3/YBa2Cu3O7 bilayer”, Appl. Phys. Lett. 90,162504 (2007).
    [18] S. L. Cheng, J. G. Lin, and T. H. Chuang, “Spin injection induced phase transition in YBa2Cu3O7−δ/Nd0.35Sr0.65MnO3 bilayer”, J. Appl. Phys. 117, 17E312 (2015).
    [19] A. Sawa, S. Kashiwaya, H. Obara, H. Yamasaki, M. Koyanagi, N. Yoshida, and Y. Tanaka, “Spin-polarized tunneling of La0.67Sr0.33MnO3/YBa2Cu3O7-δ Junctions”, Physica C 339, 287 (2000).
    [20] R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura,K. Ohoyama, and M. Ohashi, “Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1-xSrxMnO3”, Phys. Rev. B 60, 9506 (1999).
    [21] Awadhesh Mani, T. Geetha Kumary, Daniel Hsu, J. G. Lin, and Chyh-Hong Chern, “Modulation of superconductivity by spin canting in a hybrid antiferromagnet/superconductor oxide”, Appl. Phys. Lett. 94, 072509 (2009).
    [22] Kenichi Kato, Masaki Takata, Eiji Nishibori, Makoto Sakata,Noriaki Hamada, and Yutaka Moritomo, “MEM charge density analysis of orbital-ordering of Nd0.35Sr0.65MnO3”, J. Phys. Soc. Jpn. 74, 2137 (2005).
    [23] T. Geetha Kumary and J. G. Lin, “Electron spin resonance of antiferromagnetism in Nd0.43Sr0.57MnO3 and Nd0.35Sr0.65MnO3”, J. Appl. Phys. 103, 053913 (2008).
    [24] 王律云,多層薄膜樣品之X光散射研究,淡江大學物理研究所
    碩士論文,民國一百年一月。
    [25] Graham King and Patrick M. Woodward, “Cation ordering in perovskites”, J. Mater. Chem. 20,5785 (2010).
    [26] Tomohiko Nakajima, Hiroshi Kageyama, Hideki Yoshizawa, and Yutaka Ueda, “Structures and electromagnetic properties of new metal-ordered manganites: RBaMn2O6 (R=Y and rare-earth elements)”, J. Phys. Soc. Jpn., 71, 2843 (2002).
    [27] T. Arima, D. Akahoshi, K. Oikawa, T. Kamiyama, M. Uchida, Y. Matsui, and Y. Tokura, “Change in charge and orbital alignment upon antiferromagnetic transition in the A-site-ordered perovskite manganese oxide RBaMn2O6 (R=Tb and Sm)”, Phys. Rev. B 66, 140408(R) (2002).
    [28] D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, and Y.Tokura, “Random potential effect near the bicritical region in perovskite manganites as revealed by comparison with the ordered perovskite analogs”, Phys. Rev. Lett. 90, 177203 (2003).
    [29] D. Akahoshi, Y. Okimoto, M. Kubota, R. Kumai, T. Arima, Y.Tomioka, andY. Tokura, “Charge-orbital ordering near themulticritical point in A-site ordered perovskites SmBaMn2O6 and NdBaMn2O6”, Phys. Rev. B 70, 064418 (2004).
    [30] Tomohiko Nakajima and Yutaka Ueda, “1000% colossal magnetoresistance at room temperature in the A-site ordered perovskite manganites, Sm1−xLax+yBa1−yMn2O6”, J. Appl. Phys. 98,046108 (2005).
    [31] M. García-Fernández, U. Staub, Y. Bodenthin, S. M. Lawrence, A. M. Mulders, C. E. Buckley, S. Weyeneth, E. Pomjakushina, and K. Conder, “Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site-ordered SmBaMn2O6”, Phys. Rev. B 77, 060402(R) (2008).
    [32] D. Morikawa, K. Tsuda, Y. Maeda, S. Yamada, and T. Arima,“Charge and orbital order patterns in an A-site ordered perovskite-type manganite SmBaMn2O6 determined by convergent-beam electron diffraction”, J. Phys. Soc. Jpn. 81,093602 (2012).
    [33] Shigeki Yamada, Youichi Maeda, and Taka-hisa Arima, “Successive electronic transitions and anisotropic properties in a double-perovskite SmBaMn2O6 single crystal”, J. Phys. Soc. Jpn. 81, 113711 (2012).
    [34] Kunihiko Yamauchi, “Theoretical prediction of multiferroicity in SmBaMn2O6”, J. Phys. Soc. Jpn. 82, 043702(2013).
    [35] H. Sagayama, S. Toyoda,K. Sugimoto,Y. Maeda, S. Yamada, and T. Arima, “Ferroelectricity driven by charge ordering in the A-site ordered perovskite manganite SmBaMn2O6”, Phys. Rev. B 90,241113(R) (2014).
    [36] 林宜霖,國立臺灣師範大學物理研究所碩士論文,101 年6月。
    [37] 鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,中華
    民國八十年五月第一版。
    [38] 吳孟哲,LiMPO4 (M = Fe, Mn) 奈米顆粒之光譜性質研究,國
    立臺灣師範大學物理研究所碩士論文,民國一零三年八月。
    [39] James N. Hilfiker, Neha Singh, Tom Tiwald, Diana Convey, Steven M. Smith, Jeffrey H. Baker, and Harland G. Tompkins, “Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry”, Thin Solid Films 516, 7979 (2008).
    [40] F. Wooten, “Optical Properties of Solids” (Academic, New York,1972).
    [41] Nathan Hagen, Matthew Kupinski, and Eustace L. Dereniak, “Gaussian profile estimation in one dimension”, Appl. Opt. 46,5374 (2007).
    [42] Luuk J. P. Ament, Michel van Veenendaal, Thomas P. Devereaux, John P. Hill, and Jeroen van den Brink, “Resonant inelastic x-ray scattering studies of elementary excitations”, Rev. Mod. Phys. 83, 705 (2011).
    [43] E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, and Y. Tokura, “Observation of orbital waves as elementary excitations in a solid”, Nature 410, 180 (2001).
    [44] Robert A. Evarestov, Evgeny Blokhin, Denis Gryaznov, Eugene A. Kotomin, and Joachim Maier, “Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study”, Phys. Rev.B 83, 134108 (2011).
    [45] C.-P. Chang, J. G. Lin, H. T. Jeng, S.-L. Cheng, W. F. Pong, Y. C. Shao, Y. Y. Chin, H.-J. Lin, C. W. Chen, J.-R. Yang, C. H. Chen, and M.-W. Chu, “Atomic-scale observation of a graded polar discontinuity and a localized two dimensional electron density at an insulating oxide interface”, Phys. Rev. B 87, 075129 (2013).
    [46] J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, Ivan K. Schuller,C. U. Segre, K. Zhang, and M.S. Kleefischt, “Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7”, Phys. Rev.B 36, 3608 (1987).
    [47] J. G. Wen, C. Traeholt, and H.W. Zandbergen, “Stacking sequence of YBa2Cu3O7 thin film on SrTiO3 substrate”, Physica C 205, 354 (1993).
    [48] C. Visani, J. Tornos, N. M. Nemes, M. Rocci, C. Leon, J. Santamaria, S. G. E. te Velthuis, Yaohua Liu, A. Hoffmann, J. W. Freeland, M. Garcia-Hernandez, M. R. Fitzsimmons, B. J. Kirby, M. Varela, and S. J. Pennycook, “Symmetrical interfacial reconstruction and magnetism in La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 heterostructures”, Phys. Rev. B 84, 060405 (R) (2011).
    [49] W. G. Fateiey, Francis R. Dollish, Neil T. McDevitt, and Freeman F. Bentley, “Infrared and Raman Selection Rules for Lattice Vibrations: The Correlation Method”, (New York :
    136 Wiley-Interscience, a dividition of John Wiley & Sons, INC.,1972).
    [50] K. van Benthema, C. Elsa¨sser, and R. H. French, “Bulk electronic structure of SrTiO3 : experiment and theory, J. Appl. Phys. 90,6156 (2001).
    [51] H. J. Lee, J. H. Jung, Y. S. Lee, J. S. Ahn, T. W. Noh,K. H. Kim, and S-W. Cheong, “Optical properties of a Nd0.7Sr0.3MnO3 single crystal”, Phys. Rev. B 60, 5251 (1999).
    [52] Sayani Majumdar and Sebastiaan van Dijken, “Pulsed laser deposition of La1−xSrxMnO3: thin-film properties and spintronic applications”, J. Phys. D: Appl. Phys. 47, 034010 (2014).
    [53] S. G. Kaplan, M. Quijada, H. D. Drew, D. B. Tanner,G. C. Xiong, R. Ramesh,C. Kwon, and T. Venkatesanet al., “Optical evidence for the dynamic Jahn-Teller effect in Nd0.7Sr0.3MnO3”, Phys. Rev. Lett. 77, 2081 (1996).
    [54] J. H. Jung, K. H. Kim, T. W. Noh, E. J. Choi, and Jaejun Yu, “Midgap states of La1-xCaxMnO3: Doping-dependent optical-conductivity studies”, Phys. Rev. B 57, R11043 (1997).
    [55] Bettina Bechlars, Deanna M. D'Alessandro, David M. Jenkins, Anthony T. Iavarone, Starla D. Glover,Clifford P. Kubiak, and Jeffrey R. Long, “High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes”, Nature Chemistry 2, 362–368 (2010).
    [56] 翁士民,高溫超導銅氧化物 Y1-xCaxBa2Cu3Oy 和 Y1-xPrxBa2Cu4O8
    之光譜研究,國立臺灣師範大學物理研究所碩士論文,民國九
    十三年六月。
    [57] J. Bäckström, D. Budelmann, R. Rauer, M. Rübhausen, H. Rodríguez, and H. Adrian, “Optical properties of YBa2Cu3O7−δ
    and PrBa2Cu3O7−δ films: High-energy correlations and metallicity”, Phys. Rev. B 70, 174502 (2004).
    [58] 張名豪,La0.8Ba0.2MnO3 與 La0.7MnO3 薄膜之光譜性質研究,國
    立臺灣師範大學物理研究所碩士論文,民國九十六年六月。
    [59] J. H. Jung, J. S. Ahn, Jaejun Yu, T. W. Noh, Jinhyoung Lee, Y. Moritomo, I. Solovyev, and K. Terakura, “Optical investigations of the charge gap in orbital-ordered La1/2Sr3/2MnO4”, Phys. Rev. B 61, 6902 (2000).
    [60] M. V. Abrashev, J. Ba¨ckstro¨m, L. Bo¨rjesson, M. Pissas, N. Kolev, and M. N. Iliev, “Raman spectroscopy of the charge- and orbital-ordered state in La0.5Ca0.5MnO3”, Phys. Rev. B 64, 144429 (2001).
    [61] K.-Y. Choi, P. Lemmens, G. Güntherodt, Yu. G. Pashkevich, V. P. Gnezdilov, P. Reutler, L. Pinsard-Gaudart, B. Büchner, and A.Revcolevschi, “Orbiton-mediated multiphonon scattering in La1−xSrxMnO3”, Phys. Rev. B 72, 024301 (2005).
    [62] K. Yamamoto, T. Kimura, T. Ishikawa, T. Katsufuji, and Y. Tokura, “Raman spectroscopy of the charge-orbital ordering in layered manganites”, Phys. Rev. B 61, 14706 (1999).
    [63] K.-Y. Choi, P. Lemmens, G. G¨untherodt, M. Pattabiraman, G. Rangarajan, V. P. Gnezdilov, G. Balakrishnan, D. McK Paul, and M. R. Lees, “Raman scattering study of Nd1−xSrxMnO3 (x = 0.3, 0.5)”, J. Phys.: Condens. Matter 15, 3333 (2003).
    [64] K.-Y. Choi, P. Lemmens, T. Sahaoui, G. Güntherodt, Yu. G. Pashkevich, V. P. Gnezdilov, P. Reutler, L. Pinsard-Gaudart, B. Büchner, and A. Revcolevschi, “Existence of orbital polarons in ferromagnetic insulating La1-xSrxMnO3 (0.11≦x≦0.14) revealed by giant phonon softening”, Phys. Rev. B 71, 174402 (2005).
    [65] P. Postorino, A. Congeduti, E. Degiorgi, J.P. Itie´, and P. Munsch, “High-pressure behavior of LaxSr2-xMnO4 layered manganites investigated by Raman spectroscopy and x-ray diffraction”, Phys. Rev. B 65, 224102 (2002)

    下載圖示
    QR CODE