簡易檢索 / 詳目顯示

研究生: 温柏淯
Wen, Po-Yu
論文名稱: 通過掃描穿隧顯微鏡研究二硫化鉬缺陷的形成與其對電子特性的影響
Influence of Defect Formation on the Electrical Properties of Molybdenum Disulfide by Scanning Tunneling Microscope
指導教授: 傅祖怡
Fu, Tsu-Yi
口試委員: 林俊良
Lin, Chun-Liang
張明哲
Chang, Ming-Che
口試日期: 2021/07/05
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 掃描穿隧顯微鏡過渡金屬二硫族化物二硫化鉬缺陷表面態
英文關鍵詞: scanning tunneling microscope, transition metal dichalcogenide, Molybdenum disulfide, defects, surface state
研究方法: 實驗設計法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202101135
論文種類: 學術論文
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硫化鉬屬於層狀半導體中的過渡金屬二硫族化物,可透過層數改變其能隙大小,且層跟層之間屬於凡得瓦力作用,我們可以輕易地透過機械剝離來產生新的可研究的表面,一直以來都是電子元件的熱門材料。
    本次實驗我們在超高真空的環境下,利用掃描穿隧顯微鏡觀察天然二硫化鉬塊材的表面型態以及電性在四種情況下的變化,分別是機械剝離前的原始表面、機械剝離後的新鮮表面、機械剝離後曝氧8小時的表面以及機械剝離後置於大氣下7個月的表面。我們將二硫化鉬進行機械剝離後可以觀察到大量電子空乏的現象,此現象經過曝氧以及置於大氣下後幾乎退去。我們再來探討二硫化鉬的表面電性,曝氧後的二硫化鉬與置於大氣下的表面電性除了導帶的移動具有相似度以外,其表面態的特徵也吻合,藉此可以了解大氣中的氧氣是影響二硫化鉬表面電性的重要因素之一。
    透過本次實驗,我們了解表面缺陷以及環境的變化可以影響二硫化鉬的表面能帶結構,這將成為我們如何考量天然二硫化鉬作為半導體材料的重要調控條件之一。

    Molybdenum disulfide is a transition metal dichalcogenide in layered semiconductors. The energy gap can be changed by the number of layers, and the interaction between the layers is Van der Waals's force. We can easily generate a new surface for the study through mechanical exfoliation. Molybdenum disulfide has always been a popular material for electronic components.
    In this work, we used a scanning tunneling microscope to observe the surface morphology and electrical changes of natural bulk molybdenum disulfide in an ultra-high vacuum environment. We control the bulk molybdenum disulfide in four situations, which are the original surface before mechanical exfoliation, the fresh surface just after the mechanical exfoliation, the surface exposed to oxygen for 8 hours after mechanical exfoliation, and the surface exposed to the atmosphere for 7 months after mechanical exfoliation. We can observe rich electron depletion after mechanically peeling molybdenum disulfide. This phenomenon almost disappears after exposure to oxygen and under the atmosphere for a long time. We discuss the surface electrical properties of molybdenum disulfide. In addition to the similar movement of the conduction band for both molybdenum disulfide exposed to oxygen and under the atmosphere, their characteristics of the surface state are also consistent. The oxygen in the atmosphere plays an important role that affects the surface electrical properties of molybdenum disulfide.
    Through this experiment, we understand that surface defects and environmental changes can influence the surface energy band structure of molybdenum disulfide, which will become one of the important regulatory conditions for how we consider natural molybdenum disulfide as a semiconductor material.

    誌謝 I 摘要 II Abstract III 目錄 V 圖表目錄 VII Chapter 1 序論 1 1.1 二硫化鉬 (Molybdenum disulfide, MoS2)的基本特性 2 1.2 表面態(Surface State)對材料能譜的影響 4 Chapter 2 實驗原理與方法 6 2.1 掃描穿隧電子顯微鏡(scanning tunneling microscope, STM) 6 2.1.1 量子穿隧效應(Quantum tunneling effect ) 6 2.1.2 侷域態密度(Local density of state, LDOS) 9 2.1.3 掃描穿隧能譜(Scanning tunneling spectroscopy, STS) 10 2.1.4 探針引發的能帶彎曲(Tip induced band bending, TIBB) 11 2.2 拉曼光譜系統(Raman Spectra System) 12 2.2.1 拉曼散射光譜(Raman Scattering Spectra) 12 2.2.2 光激螢光(Photoluminescence, PL) 13 Chapter 3 實驗儀器與操作原理 15 3.1 實驗儀器簡介 15 3.2 超高真空系統(ultra-high vacuum system) 16 3.2.1 油封式機械幫浦(Oil-sealed mechanical pump) 17 3.2.2 渦輪分子幫浦 (Turbo molecular pump) 18 3.2.3 離子幫浦 (Ion pump) 19 3.2.4 鈦昇華幫浦 (Titanium sublimation pump) 20 3.3 真空壓力計 (Vacuum Pressure Gauge) 21 3.4 殘氣分析儀 ( Residual Gas Analyzers, RGA ) 22 3.5 加熱系統(Heating system) 23 3.6 掃描穿隧電子顯微鏡(STM) 23 3.6.1 避震裝置(vibration isolation) 24 3.6.2 步進器(stepper) 24 3.6.3 掃描頭(scanner) 25 3.6.4 電子控制系統(electronics and controller) 25 3.6.5 降溫系統 25 Chapter 4 實驗操作與步驟 27 4.1 實驗流程圖 27 4.2 探針製作 28 4.3 超高真空環境建立 31 4.4 樣品準備 32 4.4.1 機械剝離(Mechanical Exfoliation) 33 4.4.2 氧氣處理(Oxygen Exposure) 33 4.5 掃描穿隧顯微鏡操作模式 34 4.5.1 定電流模式 35 4.5.2 定高度模式 36 4.5.3 電流影像穿隧能譜(Current image tunneling spectroscopy, CITS) 36 4.6 STM影像處理 38 Chapter 5 實驗數據結果與討論 39 5.1 表面結構及缺陷分析 39 5.1.1 天然二硫化鉬塊材的檢測 39 5.1.2 原子尺度的二硫化鉬形貌分析 40 5.1.3 不同偏壓下的二硫化鉬缺陷形貌 42 5.1.4 二硫化鉬的缺陷種類分析 44 5.1.5 大尺度下的二硫化鉬形貌比較 47 5.2 二硫化鉬表面電性分析 53 5.2.1 二硫化鉬掃描穿隧能譜分析 53 5.2.2 不同處理下的二硫化鉬表面之電性比較 54 5.2.3 缺陷所造成的二硫化鉬之表面態 56 5.2.4 二硫化鉬的光激螢光能譜 57 Chapter 6 結論 59 參考文獻資料 61

    [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666.
    [2] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7 (2013) 2898-2926.
    [3] S. Lee, O.D. Iyore, S. Park, Y.G. Lee, S. Jandhyala, C.G. Kang, G. Mordi, Y. Kim, M. Quevedo-Lopez, B.E. Gnade, R.M. Wallace, B.H. Lee, J. Kim, Rigid substrate process to achieve high mobility in graphene field-effect transistors on a flexible substrate, Carbon, 68 (2014) 791-797.
    [4] M. Batzill, P. Sutter, R. Addou, A. Dahal, Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition, Applied Physics Letters - APPL PHYS LETT, 100 (2012).
    [5] H. Coy Diaz, R. Addou, M. Batzill, Interface properties of CVD grown graphene transferred onto MoS2(0001), Nanoscale, 6 (2014) 1071-1078.
    [6] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures, Nature, 499 (2013) 419-425.
    [7] L. Colombo, R.M. Wallace, R.S. Ruoff, Graphene Growth and Device Integration, Proceedings of the IEEE, 101 (2013) 1536-1556.
    [8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (2011) 147-150.
    [9] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS(2): a new direct-gap semiconductor, Phys Rev Lett, 105 (2010) 136805.
    [10] J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics, Nano Letters, 12 (2012) 4013-4017.
    [11] W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te), Physical Review B, 85 (2012).
    [12] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol, 7 (2012) 699-712.
    [13] O. El Beqqali, I. Zorkani, F. Rogemond, H. Chermette, R.B. Chaabane, M. Gamoudi, G. Guillaud, Electrical properties of molybdenum disulfide MoS2. Experimental study and density functional calculation results, Synthetic Metals, 90 (1997) 165-172.
    [14] R.G. Dickinson, L. Pauling, THE CRYSTAL STRUCTURE OF MOLYBDENITE, Journal of the American Chemical Society, 45 (1923) 1466-1471.
    [15] R. Addou, L. Colombo, R.M. Wallace, Surface Defects on Natural MoS2, ACS Appl Mater Interfaces, 7 (2015) 11921-11929.
    [16] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfideTS2, Physical Review B, 83 (2011).
    [17] C.M. Fang, G.A. Wiegers, C. Haas, R.A.d. Groot, Electronic structures of , and in the real and the hypothetical undistorted structures, Journal of Physics: Condensed Matter, 9 (1997) 4411-4424.
    [18] Z. Dai, W. Jin, M. Grady, J.T. Sadowski, J.I. Dadap, R.M. Osgood, K. Pohl, Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: A selected area low energy electron diffraction study, Surface Science, 660 (2017) 16-21.
    [19] M.R. Islam, N. Kang, U. Bhanu, H.P. Paudel, M. Erementchouk, L. Tetard, M.N. Leuenberger, S.I. Khondaker, Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma, Nanoscale, 6 (2014) 10033-10039.
    [20] H. Xu, D. Han, Y. Bao, F. Cheng, Z. Ding, S.J.R. Tan, K.P. Loh, Observation of Gap Opening in 1T' Phase MoS2 Nanocrystals, Nano Lett, 18 (2018) 5085-5090.
    [21] I. Delac Marion, D. Capeta, B. Pielic, F. Faraguna, A. Gallardo, P. Pou, B. Biel, N. Vujicic, M. Kralj, Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer, Nanotechnology, 29 (2018) 305703.
    [22] J. Shi, M. Liu, J. Wen, X. Ren, X. Zhou, Q. Ji, D. Ma, Y. Zhang, C. Jin, H. Chen, S. Deng, N. Xu, Z. Liu, Y. Zhang, All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS2 /Graphene Heterostructures, Adv Mater, 27 (2015) 7086-7092.
    [23] D.J. Trainer, A.V. Putilov, C. Di Giorgio, T. Saari, B. Wang, M. Wolak, R.U. Chandrasena, C. Lane, T.R. Chang, H.T. Jeng, H. Lin, F. Kronast, A.X. Gray, X. Xi, J. Nieminen, A. Bansil, M. Iavarone, Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2, Sci Rep, 7 (2017) 40559.
    [24] P. Vancso, G.Z. Magda, J. Peto, J.Y. Noh, Y.S. Kim, C. Hwang, L.P. Biro, L. Tapaszto, The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy, Sci Rep, 6 (2016) 29726.
    [25] S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, Defect-Dominated Doping and Contact Resistance in MoS2, ACS Nano, 8 (2014) 2880-2888.
    [26] H. Liu, A.T. Neal, P.D. Ye, Channel Length Scaling of MoS2 MOSFETs, ACS Nano, 6 (2012) 8563-8569.
    [27] S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High Performance Multilayer MoS2 Transistors with Scandium Contacts, Nano Letters, 13 (2013) 100-105.
    [28] H.-P. Komsa, A.V. Krasheninnikov, Native defects in bulk and monolayer MoS2 from first principles, Physical Review B, 91 (2015).
    [29] I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Intrinsic electron accumulation at clean InN surfaces, Phys Rev Lett, 92 (2004) 036804.
    [30] P. King, T. Veal, F. Fuchs, C. Wang, D. Payne, A. Bourlange, K. Zhang, G. Bell, V. Cimalla, O. Ambacher, R. Egdell, F. Bechstedt, Band Gap, Electronic Structure, and Surface Electron Accumulation of Cubic and Rhombohedral In2O3, Physical Review B - PHYS REV B, 79 (2009).
    [31] H. Liu, H. Zheng, F. Yang, L. Jiao, J. Chen, W. Ho, C. Gao, J. Jia, M. Xie, Line and Point Defects in MoSe2 Bilayer Studied by Scanning Tunneling Microscopy and Spectroscopy, ACS Nano, 9 (2015) 6619-6625.
    [32] A. Inoue, T. Komori, K.-i. Shudo, Atomic-scale structures and electronic states of defects on Ar+-ion irradiated MoS2, Journal of Electron Spectroscopy and Related Phenomena, 189 (2013) 11-18.
    [33] N. Ishida, K. Sueoka, R.M. Feenstra, Influence of surface states on tunneling spectra ofn-type GaAs(110) surfaces, Physical Review B, 80 (2009).
    [34] G.J. de Raad, D.M. Bruls, P.M. Koenraad, J.H. Wolter, Interplay between tip-induced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces, Physical Review B, 66 (2002).
    [35] R. Dombrowski, C. Steinebach, C. Wittneven, M. Morgenstern, R. Wiesendanger, Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110), prb, 59 (1999) 8043.
    [36] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano, 4 (2010) 2695-2700.
    [37] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2, Nano Letters, 11 (2011) 5111-5116.
    [38] A. Steinhoff, J.H. Kim, F. Jahnke, M. Rösner, D.S. Kim, C. Lee, G.H. Han, M.S. Jeong, T.O. Wehling, C. Gies, Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2, Nano Letters, 15 (2015) 6841-6847.
    [39] 國科會精密儀器發展中心, 真空技術與應用, 全華圖書, 台灣, 2004.
    [40] 蘇青森, 真空技術精華, 五南出版, 台灣, 2009.
    [41] 黃英碩, 掃描探針顯微術的原理及應用, 科儀新知, 26 (2005) 7-17.
    [42] 廖英凱, 掃描穿隧能譜──用穿隧效應,洞察量子天地, 研之有物, DOI (2017).
    [43] B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng, Y. Lu, Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2Targets in Water, Scientific Reports, 7 (2017).
    [44] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Advanced Functional Materials, 22 (2012) 1385-1390.
    [45] T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2, and α−MoTe2:Angle-resolved photoelectron spectroscopy and ab initio calculations, Physical Review B, 64 (2001) 235305.
    [46] N. Sengoku, K. Ogawa, Investigations of Electronic Structures of Defects Introduced by Ar Ion Bombardments on MoS2 by Scanning Tunneling Microscopy, Japanese Journal of Applied Physics, 34 (1995) 3363-3367.
    [47] M.D. Siao, W.C. Shen, R.S. Chen, Z.W. Chang, M.C. Shih, Y.P. Chiu, C.M. Cheng, Two-dimensional electronic transport and surface electron accumulation in MoS2, Nat Commun, 9 (2018) 1442.
    [48] P. Klement, C. Steinke, S. Chatterjee, T.O. Wehling, M. Eickhoff, Effects of the Fermi level energy on the adsorption of O2 to monolayer MoS2, 2D Materials, 5 (2018) 045025.
    [49] B. Zhao, L.L. Liu, G.D. Cheng, T. Li, N. Qi, Z.Q. Chen, Z. Tang, Interaction of O2 with monolayer MoS2: Effect of doping and hydrogenation, Materials & Design, 113 (2017) 1-8.
    [50] S. Barja, S. Refaely-Abramson, B. Schuler, D.Y. Qiu, A. Pulkin, S. Wickenburg, H. Ryu, M.M. Ugeda, C. Kastl, C. Chen, C. Hwang, A. Schwartzberg, S. Aloni, S.K. Mo, D. Frank Ogletree, M.F. Crommie, O.V. Yazyev, S.G. Louie, J.B. Neaton, A. Weber-Bargioni, Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat Commun, 10 (2019) 3382.
    [51] J. Peto, T. Ollar, P. Vancso, Z.I. Popov, G.Z. Magda, G. Dobrik, C. Hwang, P.B. Sorokin, L. Tapaszto, Spontaneous doping of the basal plane of MoS2single layers through oxygen substitution under ambient conditions, Nat Chem, 10 (2018) 1246-1251.
    [52] W. Shi, Z. Wang, Effect of oxygen doping on the hydrogen evolution reaction in MoS2monolayer, Journal of the Taiwan Institute of Chemical Engineers, 82 (2018) 163-168.

    無法下載圖示 電子全文延後公開
    2026/08/18
    QR CODE