簡易檢索 / 詳目顯示

研究生: 張致維
Zhang, Zhi-Wei
論文名稱: 二硒化鈷修飾於矽微米柱之異質結構作光陰極水分解
A Heterostrucure of CoSe2 on Silicon Microwires as a Photocathode for Water Splitting
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 二硒化鈷矽微米柱光電化學產氫
英文關鍵詞: CoSe2, silicon microwire, photoelectrochemical, hydrogen evolution
DOI URL: https://doi.org/10.6345/NTNU202205146
論文種類: 學術論文
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發展可應用於光電化學產氫反應之高效率且極穩定之共催化劑於現今為一非常迫切之議題,使用共催化劑過渡金屬二硫屬化物(transition metal dichalcogenides)為目前常見提升光催化水分解效率方法之一。本實驗第一部分將修飾二硒化鈷(CoSe2)於矽微米柱上作為一個光催化產氫之光陰極1,由於二硒化鈷具有半金屬特性,使得電荷能有效地從矽微米柱傳輸至共催化劑及電解液進行氫還原反應。修飾適量二硒化鈷於矽微米柱後將使光電流起始電壓被提升至0.18 V vs RHE,且於0 V vs RHE之光電流密度更達9 mA/cm2。
    然而,二硒化鈷修飾於矽微米柱之光陰極無法長時間於酸性溶液環境下進行光催化產氫反應,因此於實驗第二部分將解決此問題。將二硒化鈷鑲嵌於片狀氮化碳成為一穩定光催化水分解之共催化劑,此乃因片狀氮化碳能使載子更快傳導至水溶液,降低電荷累積於電極表面之發生機率,進而提升光陰極於酸性溶液進行光催化產氫之穩定度達3.5小時。

    It’s very urgent to develop high efficient and extremely stable cocatalyst as an alternative to nanobelt transition metal cocatalyst for photoelectrochemical hydrogen evolution reaction in the present. Using transition metal dichalcogenide is a very common way to enhance the efficiency of photoelectrochemical water splitting. In the first part of this experiment, we will decorate CoSe2 on silicon microwires as a photocathode for photoelectrochemical hydrogen evolution. Orthorhombic CoSe2 makes the charge transfer faster from silicon microwires to cocatalyst and electrolyte due to its semi-metallic nature. With proper amount of CoSe2 decorated on silicon microwires will enhance the onset potential to 0.18 V vs RHE and enhance the photocurrent density to 9 mA/cm2.
    However, CoSe2/Si MWs can’t maintain the photoelectrochemical hydrogen evolution in acid solution for a long time, therefore we will solve this problem in the second part of this experiment. We embedded the CoSe2 into g-C3N4 to be a stable cocatalyst for photoelectrochemical water splitting due to fast charge transportation from photocathode to electrolyte, then decrease the charge accumulation on the surface of photocathode further make the stability of photoelectrochemical hydrogen evolution in acid solution can be up to 3.5 hr.

    致謝 1 摘要 2 Abstract 3 總目錄 4 圖目錄 8 表目錄 8 第一章. 緒論 14 1.1 研究動機 14 1.2 光催化水分解製氫 18 1.2.1 基本原理 18 1.2.2 基本考量 19 1.2.3 問題與解決方法 23 1.3 文獻回顧 30 實驗方法 38 第二章. 元件製作與實驗分析原理 40 2.1 光陰極製作 40 2.1.1 元件基板 40 2.1.2 矽微米柱製成方法與設備 40 2.1.2.1 晶圓清洗(class100) 41 2.1.2.2 氧化層沉積 42 2.1.2.3 光阻塗佈 44 2.1.2.4 曝光與顯影 45 2.1.2.5 氧化層蝕刻 46 2.1.2.6 光阻去除 47 2.1.2.7 矽微米柱蝕刻 49 2.1.2.8 鋁背電極 50 2.2 光陰極製作 51 2.2.1 二硒化鈷合成 51 2.2.2 氮化碳合成 52 2.3 共催化劑修飾 53 2.4 電路製作 54 2.4.1 銅導線黏接 54 2.4.2 光陰極保護層 54 2.5 分析儀器之基礎原理 55 x光繞射圖譜儀(x-ray Diffraction) 55 拉曼光譜儀(Raman Spectrum) 57 紫外-可見光譜儀 59 掃描電子顯微鏡(Scanning Electron Microscopy) 60 穿透式電子顯微鏡與能量色散x-射線光譜Transmission Electron Microscopy & Energy-dispersive x-ray spectroscopy 62 光電化學特性分析 63 第三章. 結果與討論 65 3.1 CoSe2-Si光陰極 66 3.1.1 CoSe2-Si光陰極之表面形貌與結構 66 3.1.2 CoSe2奈米棒之特性分析 70 3.1.3 CoSe2-Si MWs光陰極之特性分析 76 3.1.3.1 CoSe2-Si MWs光電流特性分析 76 3.1.3.2 CoSe2-Si MWs光吸收特性分析 78 3.1.3.3 CoSe2-Si MWs交流阻抗特性分析 80 3.1.3.4 CoSe2-Si MWs穩定度分析 82 3.1.3.5 CoSe2-Si MWs Gas evolution 85 3.1.4 CoSe2-Si光陰極與Pt-Si光陰極之比較 85 3.2 CoSe2C3N4-Si光陰極 88 3.2.1 CoSe2/C3N4-Si光陰極之表面形貌 88 3.2.2 CoSe2/C3N4之特性分析 89 3.2.3 CoSe2/C3N4-Si光陰極之特性分析 93 3.2.3.1 CoSe2/C3N4-Si光陰極之光電流特性分析 93 3.2.3.2 CoSe2/C3N4-Si光陰極之光吸收特性 94 3.2.3.3 CoSe2/C3N4之交流阻抗分析 95 3.2.3.4 CoSe2/C3N4-Si光陰極之穩定度分析 97 3.2.3.5 CoSe2/C3N4-Si光陰極之Gas evolution 103 第四章. 結論 104 參考文獻 105

    1. M. Basu, Z. W. Zhang, C. J. Chen, P. T. Chen, K. C Yang, C. G. Ma, C. C. Lin, S. F. Hu, and R. S. Liu, Angew. Chem. 54, 6211 (2015).
    2. https://zh.wikipedia.org/wiki/%E6%87%B8%E6%B5%AE%E7%B2%92%E5%AD%90(懸浮粒子-維基百科)
    3. https://thelukewarmersway.wordpress.com/2015/02/05/solar-power-2014-still-growing-still-niche/ (全球能源消耗分佈)
    4. http://www.who.int/mediacentre/news/releases/2015/wha-26-may-2015/en/(世界衛生組織)
    5. http://health.hueyshun.com.tw/Particulate%20pollution.html
    (PM 2.5對人體之危害))
    6. http://www.scmp.com/news/hong-kong/article/1522257/hazardous-level-trace-metals-chinas-air-warn-scientists?page=all (South China Morning Post, Hong Kong)
    7. https://en.wikipedia.org/wiki/Solar_energy (太陽能-維基百科)
    8. 能源與材料 – 地球未來最有潛力的新能源:氫能源(閻正剛,台大化學)
    9. http://www.wranb.gov.tw/ct.asp?xItem=1955&ctNode=577&mp=2 (經濟部水利署 北區水資源局)
    10. http://www.eettaiwan.com/articleLogin.do?artId=8800586555&fromWhere=/ART_8800586555_480202_NT_541eb7ad.HTM&catId=480202&newsType=NT&pageNo=null&encode=541eb7ad (電子工程專輯)
    11. http://energymonthly.tier.org.tw/index.asp(經濟部能源局Bureau of Eergy, Ministry of Economic Affairs)
    12. 經濟部2007年能源科技發展研究白皮書,第三篇第二章第二節
    13. A. Fujishima, and K. Honda, Nature 238, 37 (1972).
    14. http://memo.cgu.edu.tw/Secretariat/news/58/research/research_2.htm (前瞻能源技術─太陽能製氫技術,鄭光煒 長庚化材)
    15. 把太陽光轉成化學能;科學發展, 2015年4月508期(吳紀聖 台灣大學化學工程系)
    16. A. Fujishima, and K. Honda, Nature 238, 37 (1972).
    17. J. Wu, Y. Li, J. Kubota, K. Domen, M. Aagesen, T. Ward, A. Sanchez, R. Beanland, Y. Zhang, M. Tang, S. Hatch, A. Seeds, and H. Liu, Nano Lett. 14, 2013 (2014).
    18. A. Kudo, and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
    19. 太陽光模擬器要求與新型 LED太陽光模擬器簡介;光連雙月刊2011年3月, No.92;
    20. 氫新光綠能─ 水分解光觸媒技術;科學發展2015年4月508 期;
    21. https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3% 5%85%89
    22. T. W. Kim, and K. S. Choi, Science 343, 990(2014).
    23. 歐洲專利局 公開號: WO2013053085 A1, 申請書編號:
    PCT/CN2011/002002
    24. A. Kudo, and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
    25. 染料敏化太陽能電池中之超快光致電子轉移過程; 梁國淦, 應科中心
    26. 太陽能電池; 2008年3月15日(台大化學系普化教學組魏聖軒助教)
    27. http://pub.tust.edu.tw/mechanic/mclab/public_html/_private/electronics/semiconductor/extrinsic.htm (半導體摻雜)
    28. J. H. Yang, D. Wang, H. X. Han, and C. Li, Acc. Chem. Res. 46, 8, 1900(2012).
    29. J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S. Z. Quiao, Chem. Soc. Rev. 43, 7787 (2014).
    30. A. Currao, CHIMA 61, 12, 815(2007).
    31. I. Oh, J. Kye, and S. Hwang, Nano Lett. 12, 298 (2012)
    32. D. Kong, J. J. Cha, H. Wang, H. R. Lee , and Y. Cui, Energy Environ. Sci. 6, 3553 (2013).
    33. D. Kong, H. Wang, Z. Y. Lu, and Y. Cui, J. Am. Chem. Soc. 136, 489 (2014).
    34. M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, and S. H. Yu, ACS Nano 8, 4, 3970 (2014).
    35. X. Fan, Z. W. Peng, R. Ye, H. Zhou, and X. Guo, ACS Nano 9, 7, 7407 (2015)
    36. Web of science(key word: water splitting, silicon)
    37. 科普講堂-X光的奇妙世界; 國家奈米實驗室/檢測組 姚潔宜
    38. X光繞射原理及其應用;工業材料研究所,林麗娟
    39. http://www.protrustech.com/technology_detail.php?id=54 (佐信科技)
    40. http://commons.wikimedia.org/wiki/File:Raman_energy_levels.jpg,拉曼光譜能階示意圖
    41. Douglas A. Skook, Donald M. West, F. James Holler, and Stanley R. Crouch, Fundamentals of Analytic Chemistry, 8th edition, page 786-787.
    42. 羅聖全"研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM",小奈米大世界
    43. 羅聖全"研發奈米科技的基本工具之一 電子顯微鏡-TEM",小奈米大世界
    44. W. Zhang, Z. Yang, J. Liu, Z. Hui, W. Yu, Y. Quian, G. Zhou, and L. Yang, Materials Research Bulletin 35, 2403 (2000).
    45. H. Zhang, L. Lei, and X.W. Zhang, RSC Adv. 4, 54344 (2014).
    46. C. J. Chen, M. G. Chen, C. K. Chen, P. C. Wu, P. T. Chen, M. Basu, S. F. Hu, D. P. Tsai, and R. S. Liu, Chem. Commun. 51, 549 (2015).
    47. X. Q. Bao, D. Y. Petrovykh, P. Alpuim, D. G. Stroppa, N. G., H. Fonseca, M. Costa, J. Gaspar, C. Jin, and L. Liu, Nano Energy 16, 130 (2015).

    下載圖示
    QR CODE