簡易檢索 / 詳目顯示

研究生: 黃燕儀
Ng, Yuen-Yi
論文名稱: 馬來半島極端降水之空間分布與長期變化
Spatial Distribution and Long-term Variability of Extreme Rainfall Events in Peninsular Malaysia
指導教授: 翁叔平
Weng, Shu-Ping
學位類別: 博士
Doctor
系所名稱: 地理學系
Department of Geography
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 極端降雨小波時頻分析廣義極值分布(GEV)近赤道槽跨赤道流
英文關鍵詞: Extreme rainfall, Wavelet analysis, Generalized extreme value (GEV), Near-equatorial trough, Cross-equatorial flow
DOI URL: https://doi.org/10.6345/NTNU202203568
論文種類: 學術論文
相關次數: 點閱:48下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬來半島位處於海-氣-陸交互作用相對複雜的海洋大陸地區,極端降雨的發生行為可說是不同尺度作用相互影響下所展現的結果。近年來,極端降雨事件在全球暖化及社會發展的衝擊下,對馬來半島各地已造成各方面嚴重的破壞及損失。因此,本研究將對馬來半島地區之極端降雨頻率和強度的時空變化進行更全面的探討,做為未來在災害潛勢評詁及都市發展等各方面的規劃,可因應極端降雨所帶來的天氣災害,並有效地降低災害的影響範圍。
      本研究使用馬來西亞水利灌溉局22個測站,時序從1971年1月至2007年12月共37年的日降雨資料進行分析。首先,本研究以小波時頻分析釐清馬來半島地區降雨週期的頻率變化,做為極端降雨分析的前置作業。在極端降雨的分析上,分別以超閾值法和最大值法做為極端降雨事件閾值之確定,分析極端降雨的長期變化趨勢及空間分布特性,並透過極值理論建立馬來半島極端降雨的概率分布模式,推估不同時期極端降雨的重現期,最後,透過極端降雨的個案分析,探討馬來半島地區極端降雨發生時的綜觀環境特徵。
      根據研究顯示,馬來半島東部地區的年最大降雨強度居半島之冠。春夏二季最大降雨強度主要分布在半島西部,秋冬季節最大降雨強度則分布在東部地區。極端降雨日由東往西遞減。以極端降雨趨勢的空間變化而言,在南北空間分布上,4°N以南地區的極端降雨發生頻率和強度都有增加的趨勢。另一方面,根據廣義極值分布(GEV)模式結果顯示,此分布模式對於半島西部地區極端降雨的重現水平估計難以掌握,就另一個觀點來看,這樣的結果也可能暗示了近年馬來半島極端降雨的趨勢在東西空間分布上的轉變。
      馬來半島極端降雨事件發生時的綜觀環境風場主要受到赤道西風、赤道東風和東北季風的影響,上述各環境風場在複雜地形的交互作用下形塑了馬來半島地區極端降雨的空間分布。在極端降雨空間分布的塑造上,半島西岸地區極端降雨的發生易受跨赤道流的影響;半島東岸地區的極端降雨主要分布在東北季風時期,而極端降雨的發生在南北分布上則受北近赤道槽的影響。此外,ENSO (El-Niño Southern Oscillation)事件對半島地區極端降雨的發生,離不開與季風環流的交互作用,而La-Niña現象對極端降雨的發生在於降雨強度的加劇。

    Malaysia Peninsula is situated in the Maritime Continent with complex ocean-atmosphere-terrain interaction. The extreme rainfall behavior is regarded as a result of this complex multi-scale interaction. In recent years, the extreme rainfall event, aggravated by global warming and social development, has resulted in serious devastation and losses in Malaysia Peninsula. This study is expected to investigate the spatial-temporal variability of the frequency and intensity of extreme rainfall in Peninsula in a more comprehensive way. The finding of this study can be used for risk assessment and the urban development planning to reduce the impact of climate-related disaster caused by extreme rainfall in the future.
      In this study, we made use of the daily rainfall data from a total of 22 rainfall stations obtained by the Department of Irrigation and Drainage Malaysia (DIDM) during January 1971 to December 2007. First, we have used the wavelets analysis to clarify the variability of rainfall periodicity in Malaysia Peninsula. We have employed peak over threshold (POT) and block maximum methods (BMM) to define extreme value threshold for the analysis of the long-term trends and variability and the spatial distribution of the extreme rainfall. In addition, we have used generalized extreme value (GEV) distribution to model the occurrence probability in any given years of extreme rainfall. Finally, we attempted to clarify the generalization characteristics of extreme rainfall pattern via the diagnostic case studies of extreme rainfall events.
      The results showed that the greatest rainfall intensity was found in the eastern part of Peninsular Malaysia. Seasonally, the greatest rainfall intensity was recorded in the western Peninsula during the spring and the summer and in the eastern Peninsula during the fall and winter season. Moreover, the average number of days with annual extreme rainfall decreased from the east to the west of Peninsular Malaysia. For the north-south spatial distribution, this study showed that there was an increased trend in frequency and intensity of extreme rainfall to the south of the latitude 4 north. We also noticed a limitation on the use of GEV distribution to estimate the return levels of extreme rainfall in the western Peninsula. However, the result also showed that there is a shift of spatial distribution of extreme rainfall tendency in recent years.
      The spatial distribution of extreme rainfall was greatly influenced by the interaction between the terrain and the synoptic environment dominated by the equatorial westerly, the equatorial easterly, and the northeast. Furthermore, the extreme rainfall events that occur in the western Peninsula were subjected to the impact of cross-equatorial flow, while the eastern Peninsula’s events were found during the northeast monsoon season. The latitudinal distribution of the extreme rainfall pattern is suggested to be caused by the migration of the northern near-equatorial trough. On the other hand, the ENSO episodes associated with the extreme rainfall events were also linked to the monsoon. In addition, the influence of La-Niña on extreme rainfall events have been shown to be on the increased intensity of extreme rainfall.

    目錄 第一章、緒論  1.1 研究動機 1  1.2 研究目的 3  1.3 研究流程與架構 3  1.4 研究區域環境條件及降雨概況 3 第二章、文獻回顧  2.1 熱帶地區降雨的環流特性和季節性的變化 7   2.1.1 經向環流特性與季節性的變化 7   2.1.2 緯向環流特性與季節性的變化 8   2.1.3 間熱帶輻合區 8   2.1.4 季風環流 10    a. 冬季季風 12    b. 夏季季風 13   2.1.5 熱帶地區的多尺度擾動與降雨的發生 13    a. ENSO 14    b. TBO 15    c. MJO 15   2.1.6 區域尺度擾動與降雨的發生 16  2.2 極端降雨事件的相關探討 17  2.3 極值理論 18 第三章、研究方法  3.1 資料來源 23  3.2 研究分析方法 24   3.2.1 小波分析 24   3.2.2 廣義極值分布 25   3.2.3 參數估計 26    a.最大似然估計 27    b.線性動差估計 27   3.2.4 最適性檢定 28   3.2.5 重現期推估 28 第四章、研究分析與討論  4.1馬來半島的降雨週期分析 31   4.1.1 長期趨勢分析 31   4.1.2小波時頻分析 32   4.1.3小結 34  4.2馬來半島極端降雨的長期變化趨勢與空間分布 35   4.2.1 極端降雨頻率 35   4.2.2極端降雨強度 36   4.2.3 極端降雨的空間分布 36   4.2.4 小結 38  4.3 馬來半島極端降雨重現期的推估 39   4.3.1 GEV分布之參數估計 39   4.3.2 馬來半島極端降雨重現期的空間分布變化 40   4.3.3 小結 41  4.4 馬來半島極端降雨的分布特徵 42   4.4.1各測站最大極端降雨事件綜觀天氣分析 42   4.4.2各季最大極端降雨事件綜觀天氣分析 44    a.春季 44    b.夏季 46    c.秋季 47    d.冬季 49   4.4.3極端降雨事件之分布特徵 50   4.4.4 小結 52 第五章、結論 55 參考文獻 59 附表 71 附圖 91

    丁裕國(2003)。統計氣候診斷與預測方法的重要性。山東氣象,91(23),13-16。
    史道濟(2006)。實用極值統計方法。天津:天津科學技術出版社。
    朱蘭芬、陳永明、張靜貞(2011年9月)。台灣近百年來極端降雨量之變化情形-以極端值理論與例。陳永明(主持人),氣候監測與預報。建國百年天氣分析預報與地震測報研討會,交通部中央氣象局。
    符嬌蘭、林祥、錢維宏(2008)。中國夏季分級雨日的時空特徵。熱帶氣象學報,24(4),367-373。
    郭麗娜、施能、朱興明、張立波(2006)。東南亞地區年際降水變化及其與ENSO的關係。南京氣象學院學報,29 (1),88-93。
    陳元芳、沙志貴、陳劍池、陳民(2001)。具有歷史洪水時P-Ⅲ分布線性矩法的研究。河海大學學報,29(4),76-80。
    趙爾旭、呂俊梅、璩建華(2006)。東南亞地區夏季爆發對雲南雨季開始的影響。熱帶氣象學報,22(3),209-216。
    Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484.
    Allen, M. R. & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224-232.
    American Meteorological Society (2016).Intertropical convergence zone. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Intertropical_ convergence_zone]
    Aryal, S. K., Bates, B. C., Campbell, E. P., Li, Y., Palmer, M. J., & Viney, N. R. (2009). Characterizing and modeling temporal and spatial trends in rainfall extremes. Journal of Hydrometeorology, 10, 241-253.
    Ashok, K., Guan, Z., Saji, N. H., & Yamagata, T. (2004). Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. Journal of Climate, 17, 3141-3155.
    Azpurua, M., & Dos Ramos, K. (2010). A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Progress In Electromagnetics Research M, 14, 135-145.
    Balkema, A. A., & de Haan, L. (1974). Residual life time at great age. The Annals of Probability, 2(5), 792-804.
    Beirlant, J., Vynckier, P., & Teugels, J. L. (1996). Excess functions and estimation of the extreme-value index. Bernoulli, 2(4), 293-318.
    Bett, A. K., & Ridgway, W. (1988). Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. Journal of The Atmospheric Sciences, 45, 522-536.
    Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163-172.
    Caine, S., Jakob, C., Siems, S., & May, P. (2009). Objective classification of precipitation convection regimes using a weather radar in Darwin, Australia. Monthly Weather Review, 137, 1585-1600.
    Chang, C.-P., Harr, P. A., McBride, J., & Hsu, H. H. (2004). Maritime Continent monsoon: annual cycle and boreal winter variability. In C. P. Chang (Ed.), East Asian Monsoon, 107-150. SG: World Scientific.
    Chang, C.-P., Z. Wang, J. McBride, & C.-H. Liu. (2005). Annual cycle of Southeast Asia—maritime continent rainfall and the asymmetric monsoon transition. Journal of Climate, 18, 287-301.
    Chang, P., & Zebiak, S. E. (2003). El Niño and Southern Oscillation: theory. In J. R. Holton, J. Pyle, & J. A. Curry (Eds.), Encyclopedia of Atmospheric Sciences, 719-724. Amsterdam: Academic Press.
    Chao, W. C. (2000). Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. Journal of The Atmospheric Sciences,57, 641–651.
    Cheang, B. K. (1980). Some Aspects of Winter Monsoon and Its Characteristics in Malaysia. MY: Malaysian Meteorological Service.
    Cheang, B. K. (1987). Short- and long-range monsoon prediction in Southeast Asia. Monsoons, J. S. Fein and P.L. Stephens, Eds, Wiley-Interscience, 579-606.
    Cheang, B. K., Yap, K. S., Lum, K. G., & Chang, T. Y. (1981).Variations of Rainfall in Malaysia in Response to the Oscillations of the Summer Monsoon Circulation during Winter MONEX. MY: Malaysian Meteorological Service.
    Chen, B., Lin, X., & Bacmeister, J. T. (2008). Frequency distribution of daily ITCZ patterns over the western-central Pacific. Journal of Climate, 21, 4207-4222.
    Chen, T.-C., Tsay, J.-D., Yen, M.-C., & Matsumoto, J. (2013). The winter rainfall of Malaysia. Journal of Climate, 26, 936-958.
    Chin, P. C. (1969). Cold Surges over South China (Tech. Note No. 28). [Available online at http://www.hko.gov.hk/publica/tn/tn028.pdf]
    Chou, C. M. (2011). Wavelet-based multi-scale entropy analysis of complex rainfall time seris. Entropy, 13, 241-253.
    Chu, P-S., Chen, D.-J., Lin, P.-L. (2014). Trends in precipitation extremes during the typhoon season in Taiwan over the last 60 years. Atmospheric Science Letters, 15, 37-43.
    Chu, P.-S., Zhao, X., Ruan, Y., & Grubbs, M. (2009). Extreme rainfall events in the Hawaiian Island. Journal of Applied Meteorology and Climatology, 48, 502-516.
    Coles, S. G., & Pericchi, L. R. (2003). Anticipating catastrophes through extreme value modelling. Applied Statistics, 52, 405-416.
    Coles, S. G., Pericchi, L. R., & Sisson, S. A. (2003). A fully probabilistic approach to extreme rainfall modelling. Journal of Hydrology, 273, 35-50.
    Cubasch, U., & Meehl, G. A. (2001). Projection of future climate change. In J. T., Houghton et al. (Eds.), Climate Change 2001: The Scientific Basis, 525-582. UK: Cambridge University Press.
    Dai, A., & Deser, C. (1999). Diurnal and semidiurnal variations on global surface wind and divergence fields. Journal of Geophysical Research, 104, 31,109-31,125.
    Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41(7), 909-996.
    Desar, C. (1994). Daily surface wind variations over the equatorial Pacific Ocean. Journal of Geophysical Research, 99, 23,071-23,078.
    Ding, Y., & Sikka, D. R. (2006). Synoptic systems and weather. In B. Wang (Eds.), The Asian Monsoon, 131-202. UK: Praxis Publishing Ltd.
    Falk, M., Hüsler, J., & Reiss, R.-D. (2004). Laws of small numbers: extremes and rare events (2nd. ed.). Basel; Boston: Birkhäuser Verlag.
    Feng, S., Nadarajah, S., & Hu, Q. (2007). Modeling annual extreme precipitation on China using the generalized extreme value distribution. Journal of the Meteorological Society of Japan, 85(5), 599-613.
    Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180-190.
    Fujita, M., Kimura, F., & Yoshizaki, M. (2010). Morning precipitation peak over the strait of Malacca under a calm condition. Monthly Weather Review, 138, 1474-1486.
    Gastineau, G., Li, L., & Le Treut, H. (2009). The Hadley and Walker circulation change in global warming conditions described by idealized atmospheric simulations. Journal of Climate, 22, 3993-4014.
    Gilli, M. & Këllezi, E. (2006). An application of extreme value theory for measuring financial risk. Computational Economics, 27(1), 1-23.
    Gottschalck, J. (2014, Dec 31). What is the MJO and why do we care? [NOAA Climate.gov]. Retrieved March 25, 2016, from https://www.climate.gov/ news-features/blogs/enso/what-mjo-and-why-do-we-care.
    Gray, W. M. (1968). Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96, 669-700¬.
    Groisman, P. Y., Knight, R. W., & Karl, T. R. (2012). Changes in intense precipitation over the Central United State. Journal of Hydrometeorology, 13(1), 47-66.
    Grossmann, A., & Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathenatical Analysis, 15(4), 723-736.
    Haam, E., & Tung, K.-K. (2012). Statistics of Solar cycle–La Nin˜ a connection: Correlation of two autocorrelated time series. Journal of the Atmospheric Sciences, 69, 2934-2939.
    Hassan, H., & Chung, Y. W. (2010). Extreme value modeling and prediction of extreme rainfall: A Case Study of Penang. AIP Conference Proceeding, 1309, 372-393. doi: http://dx.doi.org/10.1063/1.3525139
    Hassan, H., Radi, N. F. A., & Kassim, S. (2012). Modeling the distribution of extreme share return on Malaysia using generalized extreme value (GEV) distribution. AIP Conference Proceeding, 1450, 82-89. doi: 10.1063/1.4724121
    Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19,5686-5699.
    Hershfiels, D. M. (1973). On the probability of extreme rainfall events. Bulletin American Meteorological Society, 54(10), 1013-1018.
    Hosking, J. R. M. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society B, 52, 105-124.
    Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the generalised extreme value distribution by the method of probability-weighted moments. Technometrics, 27, 251-261.
    Hsu, H. H., Terng, C. T., & Chen, C. T. (1999). Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. Journal of Climate, 12, 793-810.
    Ideião, S. M. A., & Santos, C. A. G. (2005). Analysis of precipitation time series using the wavelet transform. Sociedade & Natureza, Uberlândia, Special Issue, 736-745.
    Intergovernmental Panel on Climate Change, IPCC. (2007). Observed changes in climate and their effects. Climate change 2007: Synthesis Report. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthe sis_report.htm (last accessed 18 September 2012).
    Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81(348), 158-171.
    Joseph, P. V., Simon, A., Nair, V. G., & Thomas, A. (2004). Intra-Seasonal Oscillation (ISO) of South Kerala rainfall during the summer monsoons of 1901-1995. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 113(2),19-150.
    Juneng, L. & Tangang, F. T. (2002). Malaysia northeast monsoon precipitation variability and its relationships with tropical sea level pressure. Proceedings of the Regional Symposium on Environment and Natural Resources, April 10-11, Kuala Lumpur, 1, 251-260.
    Juneng, L., Tangang, F. T., & Reason, C. J. C. (2007). Numerical case study of an extreme rainfall event during 9-11 December 2004 over the east coast of Peninsular Malaysia. Meteorology and Atmospheric Physics, 98, 81-98.
    Juneng, L., Tangang, F. T., Kang, H., Lee, W.-J., & Yap, K.S. (2010). Statistical downscaling forecasts for winter monsoon precipitation in Malaysia using multimodel output variables. Journal of Climate, 23, 17-27.
    Jury, M. R., & Melice, J. L. (2000). Analysis of Durban rainfall and Nile river flow 1871-1999. Theoretical and Applied Climatology, 67,161-169.
    Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79(2), 231-241.
    Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in water resources, 25, 1287-1304.
    Kim, S. (2004). Wavelet analysis of precipitation variability in Northern California, U.S.A. KSCE Journal of Civil Engineering, 8(4), 471-477.
    Kottek, M., Griesek, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263.
    Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall: Ⅰ. Theoretical investigation. Hydrological Sciences Journal, 49(4), 575-590.
    Koutsoyiannis, D., & Baloutsos, G. (2000). Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences. Natural Hazards, 29, 29-48.
    Krishnamurthy, C. K. B., Lall, U., & Kwon, H.-H. (2009). Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. Journal of Climate, 22, 4737-4746.
    Krishnamurti, T. N., Stefanova, L., & Misra, V. (2013). Tropical Meteorology: An Introduction. NY: Springer-Verlag.
    Lau, K. -M., & Wu, H. -T. (2007). Detecting trends in tropical rainfall characteristic, 1979-2003. International Journal of Climatology, 27, 979-988.
    Lau, K.-M., & Weng, H. (1995). Climate signal detection using wavelet transform: How to make a time series sing. Bulletin of the American Meteorological Society, 76, 2391-2402.
    Lau, K.-M., & Yang, S. (2003). Walker circulation. In J. R. Holton, J. Pyle, and J. A. Curry (Eds.), Encyclopedia of Atmospheric Sciences, 2505-2510. Amsterdam: Academic Press.
    Lau, K.-M., Wu, H.-T., & Yang, S. (1998). Hydrologic processes associated with the first transition of the Asian summer monsoon: a pilot satellite study. Bulletin of the American Meteorological Society, 79, 1871-1882.
    Lau, N.-C., & Nath, M. J. (2000). Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. Journal of Climate, 13, 4287-4309.
    Lavenda, B. H., & Cipollone, E. (2000). Extreme value statistics and thermodynamics of earthquakes: aftershock sequences. Annali Di Geofisica, 43(5), 967-982.
    Li, C. Y., Sun, S. Q., & Mu, M. Q. (2001). Origin of the TBO-interaction between anomalous East-Asian winter monsoon and ENSO cycle. Advances in Atmospheric Sciences, 18, 554-566.
    Li, Y., Cai, W., & Campbell, E. P. (2005). Statistical modeling of extreme rainfall in southwest Western Australia. Journal of Climate, 18, 852-863.
    Liew, J. & Fredolin, T. T. (2008). Level and source of predictability of seasonal rainfall anomalies in Malaysia using canonical correlation analysis. International Journal of Climatology, 28, 1255-1267.
    Lim, J. T., & Azizan A. S. (2004). Weather and Climate of Malaysia. MY: University of Malaya Press.
    Liu, D., & Ma, Y. (2007). Wavelet analysis of main flood season precipitation time series in area of well-irrigation in Sanjiang Plain. Proceedings of 2007 International Conference on Agriculture Engineering, 54-60.
    Liu, S. C., Fu, C. B., Shiu, C.-J., Chen, J.-P., & Wu, F. (2009). Temperature dependence of global precipitation extremes. Geophysical Research Letters, 36, L17702. doi:10.1029/2009GL040218.
    Longin, F. M. (2000). From value at risk to stress testing: the extreme value approach. Journal of Banking & Finance, 24, 1097-1130.
    Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of The Atmospheric Sciences, 28, 702–708.
    Madden, R. A., & Julian, P. R. (1994). Observations of the 40-50-day tropical oscillation -A review. Monthly Weather Review, 122, 814-837.
    Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events, 1, At-site modeling, Water Resources Research,33(4), 747–758.
    Mann, M. E., & Park, J. (1994). Global-scale modes of surface temperature variability on interannual to century timescales. Journal of Geophysical Research 99(25), 819-833.
    Manton, M. J., della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., Collins, D. A., Daw, G., Finet, A., Gunawan, D., Inape, K., Isobe, H., Kestin, T. S., Lefale, P., Leyu, C. H., Lwin, T., Maitrepierre, L., Ouprasitwong, N., Page, C. M., Pahalad, J., Plummer, N., Salinger, M. J., Suppiah, R., Tran, V. L., Trewin, B., Tibig, I., & Yee, D. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. International Journal of Climatology, 21(3), 269-284.
    Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744.
    McNeil, A. & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271-300.
    McNeil, A. J. (1999). Extreme value theory for risk managers. Internal Modelling & CAD II : Qualifying and Quantifying Risk within a Financial Institution, 9-113. London: Risk Book.
    Meehl, G. A. (1994). Influence of the land surface in the Asian summer monsoon: external conditions versus internal feedback. Journal of Climate, 7, 1033-1049.
    Meehl, G. A. (1997). The South Asian monsoon and the tropospheric biennial oscillation(TBO). Journal of Climate, 10, 1921-1943.
    Meehl, G. A., Arblaster, J. M., Branstator, G., & Van Loon, H. (2008). A coupled air–sea response mechanism to solar forcing in the Pacific region. Journal of Climate, 21, 2883-2897.
    Mendez, F. J., Menendez, M., Luceno, A., & Losada, I. J. (2007). Analyzing monthly extreme sea levels with a time-dependent GEV model. Journal of Atmospheric and oceanic technology, 24, 894-911.
    Meyer, Y. (1992). Wavelets and operators. UK: Cambridge University Press.
    Misios, S., & Hauke, S. (2012). Mechanisms involved in the amplification of the 11-yr solar cycle signal in the Tropical Pacific Ocean. Journal of Climate, 25, 5102-5118.
    Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory. Geophysics, 47(2), 203-236.
    Murakami, T. (1979). Winter monsoonal surges over East and Southeast Asia. Journal of the Meteorological Societh of Japan, 57, 133-158.
    Nadarajah, S., & Choi, D. (2007). Maximum daily rainfall in South Korea. Journal of Earth System Science, 116(4), 311-320.
    Nguyen, H., Evans, A., Lucas, C., Smith, I., & Timbal, B. (2013). The Hadley circulation in reanalyses: climatology, variability, and change. Journal of Climate, 26, 3357-3376.
    Nicholls, N. (2003). El Niño and Southern Oscillation: observation. In J. R. Holton, J. Pyle, & J. A. Curry (Eds.), Encyclopedia of Atmospheric Sciences, 731-719. Amsterdam: Academic Press.
    Nieuwolt, S. (1968). Diurnal rainfall variation on Malaya. Annals of the Association of American Geographers, 58(2), 313-326.
    Oki, T., & Musiake, K. (1994). Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. Journal of Applied Meteorology, 33, 1445-1463.
    Oort, A. H., & Yienger, J. J. (1996). Observed interannual variability in the Hadley circulation and its connection to ENSO. Journal of Climate, 9, 2751-2767.
    Orgill, M. M., & Riehl, H. (1967). Some aspects of the onset of the Summer Monsoon over Southeast Asia (Tech. Rep. Contract No. DA28-043-AMC-01303(E)). [Available from National Technical Information Service AD819959]
    Osborn, T. J., Hulme, M., Jones, P. D., & Basnett, T. A. (2000). Observed trends in the daily intensity of United Kingdom precipitation. International Journal of Climatology, 20(4), 347-364.
    Ouergli, A., & De Felice, P. (1997). Wavelet transform technique to study the behavior of the 10-20-day and 25-50-day modes during Indian summer monsoon onset. Meteorology and Atmospheric Physics, 63, 171-178.
    Pagliara, S., Viti, C., Gozzini, B., Meneguzzo, F., & Crisci, A. (1998). Uncertainties and trends in extreme rainfall series in Tuscany, Italy: effects on urban drainage networks design. Water Science and Technology, 37(11), 195-202.
    Parida, B. P. (1999). Modelling of Indian summer monsoon rainfall using a four-parameter Kappa distribution. International Journal of Climatology, 19, 1389-1398.
    Park, J.-S., & Jung, H.-S. (2002). Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate. Theoretical and Applied Climatology, 72, 55-64.
    Park, J.-S., Jung, H.-S., Kim, R.-S., & Oh, J.-H. (2001). Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution. International Journal of Climatology, 21, 1371-1384.
    Park, J.-S., Kang, H.-S., Lee, Y. S., & Kim, M.-K. (2011). Changes in the extreme daily rainfall in South Korea. International Journal of Climatology, 31(15), 2290-2299.
    Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119-131.
    Qian, J.-H. (2008). Why precipitation is mostly concentrated over island in the maritime continent. Journal of the Atmospheric Sciences, 65, 1428-1441.
    Quan, X.-W., Diaz, H. F., & Hoerling, M. P. (2004). Changes in the tropic Hadley cell since 1950. In H. F. Diaz and R. S. Bradley (Eds.), The Hadley Circulation: Present, Past and Future, 85-120. Netherlands: Kluwer Academic Publishers.
    Ramage, C. S. (1968). Role of a tropical ‘Maritime Continent’in the atmospheric circulation. Monthly Weather Review, 96, 365–369.
    Rauniyar, S. P., & Walsh, K. J. E. (2011). Scale interaction of the diurnal cycle of rainfall over the maritime continent and Australia: influence of the MJO. Journal of Climate, 24,325-348.
    Raymond, D. J., Raga, G. B., Bretherton, C. S., Molinari, J., Lopez-Carrillo, & Fuchs, Z. (2003). Convective forcing in the intertropical convergence zone of the eastern Pacific. Journal of The Atmospheric Sciences,60, 2064–2082.
    Raynal-Villasenor, J. A. (2012). Maximum likelihood parameter estimators for the two populations GEV distribution. International Journal of Research & Reviews in Applied Sciences, 11(3), 350-357.
    Reed, R., Cambell, W. J., Rasmusson, L. A., & Rogers, D. G. (1961). Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. Journal of Geophysical Research, 66, 813-818.
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363.
    Santos, C. A. G., Galvão, C. O., Suzuki, K., & Trigo, R. M. (2001). Matsuyama city rainfall data analysis using wavelet transform. Annual Journal of Hydraulic Engineering-JSCE, 45, 211-216.
    Sato, T., Miura, H., Satoh, M., Takayabu, Y. N., & Wang, Y. Q. (2009). Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. Journal of Climate, 22, 4809-4826.
    Seiki, A., Nagura, M., & Hasegawa, T. (2015). Seasonal onset of the Madden–Julian oscillation and its relation to the southeastern Indian Ocean cooling. Journal of the Meteorological Society of Japan, 93A, 139-156.
    Sobey, R. J. (2005). Extreme low and high water levels. Coastal Engineering, 52, 63-77.
    Sugahara, S., da Rocha, R. P., & Silveira, R. (2009). Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. International Journal of Climatology, 29, 1339-1349.
    Suhaila, J., & Jemain, A. A. (2012). Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theoretical and Applied Climatology, 108, 235-245.
    Suhaila, J., Deni, S. M., Wan Zin, W. Z., & Jemain, A. A. (2010). Spatial patterns and trend of daily rainfall regime in Peninsular Malaysia during the southwest and northeast monsoons: 1975-2004. Meteorology and Atmospheric Physics, 110, 1-18.
    Sumi, A. & Murakami, T. (1981). Large-scale aspects of the 1978-79 winter circulation over the greater WMONEX region. Part I: Monthly and season mean fields. Journal of the Meteorological Society of Japan, 59, 625-645.
    Su, S.-H., Kuo, H.-C., Hsu, L.-H, & Yang, Y.-T. (2012). Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. Journal of the Meteorological Society of Japan, 90(5), 721-736.
    Sun, Y., Solomon, S., Dai, A., & Portmann, R. W. (2007). How often will it rain? Journal of Climate, 20, 4801-4818.
    Suppiah, R., & Hennessy, K. J. (1998). Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. International Journal of Climatology, 18(10), 1141-1164.
    Syafrina, A. H., Zalina, M. D., & Juneng, L. (2014). Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied Climatology. doi: 10.1007/s00704-014-1145-8.
    Tangang, F. T. & Alui, B. (2002). Enso influences on precipitation and air temperature variability in Malaysia. Proceedings of the Regional Symposium on Environment and Natural Resources, April 10-11, Kuala Lumpur, 1, 124-131.
    Tangang, F. T., & Juneng, L. (2004). Mechanisms of Malaysian rainfall anomalies. Journal of climate, 17, 3616-3622.
    Teixeira, M. D. S., & Satyamurty, P. (2011). Trends in the frequency of intense precipitation events in sSouthern and southeastern Brazil during 1960–2004. Journal of Climate, 24, 1913-1921.
    Tomczak, M., & Godfrey, J. S. (2001). Regional Oceanography: an Introduction (2nd ed.). IN: Daya Publishing House.
    Trenberth, K. E. (2001). El Niño Southern Oscillation (ENSO). In J. H. Steele, K. K. Turekian, & S. A. Thorpe (Eds.), Encyclopedia of Ocean Sciences (2nd ed.), 228-240. [Available online at: http://www.sciencedirect.com/science/article/pii/ B9780123744739002629]
    Trenberth, K. E., Hurrell, J. W., & Stepaniak, D. P. (2006). The Asian monsoon: Global perspectives. In B. Wang (Ed.), The Asian Monsoon, 67-88. UK: Praxis Publishing Ltd.
    Tukey, J. W. (1977). Exploratory Data Analysis. Reading Massachusetts: Addison-Wesley Publishing Company.
    Van Loon, H., Meehl, G. A., & Shea, D. J. (2007). Coupled air-sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research, 112, D2108. Doi:10.1029/2006JD007378.
    Vincent, D. G. (1994). The South Pacific Convergence Zone (SPCZ): A Review. Monthly Weather Review, 122, 1949-1970.
    Waliser, D. E., & Gautier, C. (1993). A satellite-derived climatology of the ITCZ. Journal of Climate, 6, 2162-2174.
    Waliser, D. E., & Somerville, R.C. (1994). Preferred latitudes of the intertropical convergence zone. Journal of The Atmospheric Sciences, 51, 1619-1639.
    Wan Zin, W. Z. & Jemain, A. A. (2010). Statistical distribution of extreme dry spell in Peninsular Malaysia. Theoretical and Applied Climatology, 102, 253-264.
    Wan Zin, W. Z., Jamaludin, S., Deni, S. M., & Jemin, A. A. (2010). Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005. Theoretical and Applied Climatology, 99, 303-314.
    Wan Zin, W. Z., Jemin, A. A., & Ibrahim, K. (2009). The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of LQ-moment. Theoretical and Applied Climatology, 96, 337-344.
    Wang, C. (2004). ENSO, Atlantic climate variability, and the Walker and Hadley circulation. In H. F. Diaz and R. S. Bradley (Eds.), The Hadley Circulation: Present, Past and Future, 173-202. Netherlands: Kluwer Academic Publishers.
    Wang, Z., & Chang, C.-P. (2008). Mechanism of the asymmetric monsoon transition as simulated in an AGCM. Journal of Climate, 21,1829-1836.
    Webster, P. J. (1983). The large scale structure of the tropical atmosphere. In B. J. Hoskins & R. P. Pearce (Eds.), Large-Scale Dynarmical Processes in the Atmosphere, 235-275. NY: Academic Press.
    Webster, P. J. (2004). The elementary Hadley circulation. In H. F. Diaz and R. S. Bradley (Eds.), The Hadley Circulation: Present, Past and Future, 9-60. Netherlands: Kluwer Academic Publishers.
    White, W. B., Lean, J., Cayan, D. R., & Dettinger, M. D. (1997). Response of global upper ocean temperature to changing solar irradiance. Journal of Geophysical Research, 102, 3255-3288.
    Wilks, D. S. (1993). Comparison of three-parameter probability distribution for representing annual extreme and partial duration precipitation series. Water Resources Researces, 29, 3543-3549.
    Xie, S.-P. (2004). The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. In H. F. Diaz and R. S. Bradley (Eds.), The Hadley Circulation: Present, Past and Future, 121-152. Netherlands: Kluwer Academic Publishers.
    Yi, L., & Lim, H. (2007). Semi-idealized COAMPS simulations of Sumatra squall lines: The role of boudary forcing. In W.-H., Ip, & Y.-T., Chen (Eds.), Advances in Geosciences: Solid Earth, Ocean Science and Atmospheric Science, 9, 111-124. SG: World Scientific.
    Zakaria, Z. A., Shabri, A., & Ahmad, U. N. (2012). Regional frequency analysis of extreme rainfalls in the west coast of Peninsular Malaysia using partial L-moments. Water Resour Manage, 26, 4417-4433.
    Zalina, M. D., Desa, M. N. M., Nguyen, V.-T.-A., & Kassim, A. H. M. (2002b). Selecting a probability distribution for extreme rainfall series in Malaysia. Water Science & Technology, 45(2), 63-68.
    Zalina, M. D., Kassim, A. H. M., Desa, M. N. M., & Nguyen, V.-T.-V. (2002a). Statistical analysis of at-site extreme rainfall processes in Peninsular Malaysia. In H. A. J., Van Lanen, & S., Demuth (Eds.), FRIEND 2002: Regional Hydrology: Bridging the Gap between Research and Practice, 61-68. Wallingford: IAHS.
    Zhou, W., & Chan, J. C. L. (2007). ENSO and the South China Sea summer monsoon onset. International Journal of Climatology, 27, 157-67.
    Zwiers, F. W., Zhang, X. & Feng, Y. (2011). Anthropogenic influence on long return period daily temperature extremes at regional scales. Journal of Climate, 24, 881-892.

    下載圖示
    QR CODE