簡易檢索 / 詳目顯示

研究生: 吳鈺涵
Wu, Yu-Han
論文名稱: 氣候變遷對西北太平洋颱風發展之影響
Impact of climate change on the development of tropical cyclones in the western North Pacific
指導教授: 吳朝榮
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 颱風上層海洋溫度結構渦漩
DOI URL: https://doi.org/10.6345/NTNU202203936
論文種類: 學術論文
相關次數: 點閱:99下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球暖化的影響,使得海洋應能提供更多能量讓颱風發展,因此颱風強度也應逐年增強,但在西北太平洋颱風平均最大風速增強趨勢並不顯著,故本研究針對此現象進一步分析。
    本研究使用衛星觀測資料和實測資料進行分析研究,發現在西北太平洋颱風發展區 (Main Development Region, MDR) 之海表面高度異常值 (SSHA) 上升趨勢分布並不均勻,尤其在MDR北側之渦漩活躍區 (South Eddy-Rich Zone, SERZ) 的SSHA為下降趨勢,此現象反映出26°C海水深度 (D26) 變淺,造成可提供給颱風的能量減少,因此SERZ之SSHA的下降趨勢使得颱風在通過此區域後颱風受到海洋條件的抑制其發展,而此區域SSHA下降是由於冷渦數量增加及暖渦數量減少所造成。
    另外,由颱風通過SERZ之機率可發現在2002年以前及2003年以後趨勢有明顯不同,2002年以前颱風通過機率逐年增加,而2003年後颱風通過機率則逐年減少,但統計颱風平均最大風速後發現2002年以前颱風平均最大風速的上升趨勢比2003年以後之上升趨勢大,故針對颱風滯留時間、大氣條件以及海洋條件去探討,結果顯示在2003年以後颱風在SERZ滯留時間增長,又因SERZ之D26在2002年以前逐年變深,較有利於颱風發展,而2003年以後D26逐年變淺,進而抑制了颱風發展。

    摘要 I 目錄 II 圖目錄 V 表目錄 VII 第一章、緒論 1 1.1 前言 1 1.1.1 颱風 1 1.1.2 研究區域 2 1.2 文獻回顧 3 1.2.1 大氣條件對颱風發展的影響 3 1.2.2 海洋條件對颱風發展的影響 4 1.3 研究動機 6 第二章、研究資料與方法 7 2.1 研究資料 7 2.1.1 Argo floats溫度資料 7 2.1.2 WOA01資料庫 7 2.1.3 AVISO海表高度異常資料 8 2.1.4 混合層深度資料 8 2.1.5 OISST海表面溫度資料 9 2.1.6 HYCOM模式資料 9 2.1.7 JTWC颱風資料 9 2.1.8 垂直風切資料 10 2.1.9 中尺度渦漩資料庫 10 2.2 研究方法 11 2.2.1 颱風資料分析 11 2.2.2 海洋溫度結構估算 12 第三章、結果與討論 15 3.1 結果分析 15 3.1.1 SSHA及D26趨勢 15 3.1.2 颱風通過SERZ前後之風速變化 16 3.1.3 SSHA下降趨勢之探討 16 3.2 討論 17 3.2.1 颱風生成點位置 18 3.2.2 颱風之滯留時間 19 3.2.3 垂直風切 20 3.2.4 D26在不同時段之差異 21 3.2.5 颱風通過SERZ風速變化 (分不同時段探討) 21 第四章、結論 23 第五章、未來工作 25 參考文獻 54

    Bender, M. A., and Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Monthly Weather Review, 128 (4), 917-946.

    Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P., and Ghill, M. (2007). Cluster Analysis of typhoon tracks. Part II: Large-Scale Circulation and ENSO. Journal of Climate, 20 (14), 3654-3676.

    Chan, J. C. L. and Liu, K. S. (2004). Global warming and Western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17 (23), 4590-4602.

    Chelton, D. B., Schlax, M. G., and Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress In Oceanography, 91 (2), 167-216.

    Chen, S. S., Knaff, J. A., and Marks Jr, F. D. (2006). Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly weather review, 134 (11), 3190-3208.

    Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401 (6754), 665-669.

    Emanuel, K., DesAutels, C., Holloway, C., and Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the Atmospheric Sciences, 61 (7), 843-858.

    Gallina, G. M., and Velden, C. S. (2002). Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information, paper presented at 25th Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., San Diego, Calif.

    Goni, G., DeMaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., Mavume, A., Lauer, C., Lin, I. I., Ali, M. M., Sandery, P., Ramos-Buarque, S., Kang, K., Mehra, A.,
    Chassignet, E., Halliwell, G. (2009). Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22 (3), 190-197.

    Goni, G., Kamholz, S., Garzoli, S., and Olson, D. (1996). Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research Atmospheres, 101 (c7), 16273-16289.

    Goni, G. J., and Trinanes, J. A. (2003). Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos Transactions American Geophysical Union, 84 (51), 573.

    Lin, I. I., and Chan, J. C. L. (2015). Recent decrease in typhoon destructive potential and global warming implications. Nature Communications, 6, 7182.

    Lin, I. I., Chou, M. D., and Wu, C. C. (2011). The impact of a warm ocean eddy on typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling. Terrestrial Atmospheric and Oceanic Sciences, 22 (6), 66.

    Lin, I. I., Wu, C. C., Emanuel, K. A., Lee, I. H., Wu, C. R., and Pun, I. F. (2005). The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133 (9), 2635-2649.

    Lin, I. I., Wu, C. C., Pun, I. F., and Ko, D. S. (2008). Upper-Ocean Thermal Structure and the western north pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Monthly Weather Review, 136, 3288-3306.

    Palmen, E., (1948). On the formation and structure of tropical hurricanes. Geophysica, 3 (1), 26-38.

    Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., and Nordbeck O. (2012). Global trends in tropical cyclone risk. Nature Climate Change, 2 (4), 289-294.

    Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., and Liu, W.T. (2007). Validation and application of altimetry–derived upper ocean thermal structure in the western North Pacific Ocean for typhoon for typhoon–intensity forcast. IEEE Transactions on Geoscience and Remote Sensing, 45 (6), 1616-1630.

    Qiu, B., Chen, S., Wu, L., and Kida, S. (2015). Wind-versus eddy-forced regional sea level trends and variability in the North Pacific Ocean. Journal of Climate, 28 (4), 1561-1577.

    Scharroo, R., Smith, W. H. F., Lillibridge, J. L. (2005). Satellite altimetry and the intensification of Hurricane Katrina. Eos Transactions American Geophysical Union, 86 (40), 366.

    Shay, L. K., Goni, G. J., and Black, P. G. (2000). Effects of a warm oceanic feature on hurricane opal. Monthly Weather Review, 128 (5), 1366-1383.

    Walker, N. D., Leben, R. R., Pilley, C. T., Shannon, M., Herndon, D. C., Pun, I. F., Lin, I. I., and Gentemann, C. L. (2014). Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophysical Research Letters, 41 (21), 795-7601.

    Wu, C. C., Lee, C. Y., and Lin, I. I. (2007). The effect of the ocean eddy on tropical cyclone intensity. Journal of the Atmospheric Sciences, 64 (10), 3562-3578.

    潘任飛 (2010):利用衛星測高觀測西北太平洋的上層海洋溫度結構,博士論文,國立台灣大學海洋研究所。

    下載圖示
    QR CODE