簡易檢索 / 詳目顯示

研究生: 吳柄村
Wu, Bing-Tsun
論文名稱: 鈣鈦礦與鐵磁層交互作用與磁阻元件製作
Interaction between perovskite and ferromagnetic layer for magnetoresistance devices
指導教授: 林文欽
Lin, Wen-Chin
口試委員: 洪振湧 李亞儒
口試日期: 2021/06/16
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 鈣鈦礦鐵磁材料交互作用磁阻
英文關鍵詞: perovskite, CsPbBr3, MAPbBr3, magnetoresistance
研究方法: 實驗設計法準實驗設計法現象學比較研究文件分析法現象分析
DOI URL: http://doi.org/10.6345/NTNU202100521
論文種類: 學術論文
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 目錄 V 第一章 緒論 1 1-1 鈣鈦礦基本介紹 1 1-2 磁阻介紹 3 1-3 研究動機 9 1-3-1 鈣鈦礦與鐵磁性材料間交互作用 9 1-3-2 成長連續性鈣鈦礦薄膜 9 第二章 實驗儀器與方法 12 2-1 鍍膜方法 12 2-1-1 使用基板與材料12 2-1-2 熱蒸鍍系統 12 2-1-3 前驅液準備與旋轉塗佈法製備CsPbBr3 14 2-2 元件製作 16 2-3 量測儀器 18 2-3-1 磁光柯爾效應系統 ( Magneto-optic Kerr effect, MOKE ) 18 2-3-2 原子力顯微鏡 ( Atomic force microscopy, AFM ) 22 2-3-3 掃描式電子顯微鏡 ( Scanning electron microscope, SEM ) 25 2-3-4 光致發光光譜儀 ( Photoluminescence, PL ) 27 2-3-5 電性量測 ( electrical measurement ) 28 第三章 實驗結果與討論 29 3-1 連續性MAPbBr3薄膜分析與討論 29 3-1-1 MAPbBr3光致發光頻譜 29 3-1-2 旋轉塗佈MAPbBr3前後磁滯曲線比較 30 3-1-3 旋轉塗佈MAPbBr3後表面粗糙度比較 31 3-1-4 旋轉塗佈MAPbBr3後截面形貌比較 32 3-1-5 MAPbBr3/Fe(5 nm)照射雷射光下磁阻變化 34 3-2 CsPbBr3在Co方格磁性層上交互作用分析與討論 35 3-2-1 方格陣列成長鐵磁層Co表面形貌 35 3-2-2 CsPbBr3成長在方格陣列Co(16 nm)上照光前後磁滯曲線比較 36 3-2-3不同厚度的Co薄膜對於雷射照光的影響 44 3-2-4 CsPbBr3旋塗於不同厚度的Co薄膜磁性特性比較 45 3-2-5 CsPbBr3/Co(6 nm)樣品照光前後分析 46 3-2-6 CsPbBr3/Co(10 nm)樣品照光前後分析 48 3-2-7 CsPbBr3/Co(12 nm)樣品照光前後分析 50 3-2-8 CsPbBr3/Co(16 nm)樣品照光前後分析 52 3-2-9 CsPbBr3旋塗於不同厚度Co方格照射時間與矯頑場比較 54 3-2-10 CsPbBr3成長在方格陣列Co(10 nm)上照光前後表面形貌比較 55 3-3 CsPbBr3 / Fe50Pd50 (10 nm)照光前後分析與討論 56 3-3-1 CsPbBr3 / Fe50Pd50 (10 nm)照光前後光致發光頻譜比較 56 3-3-2 CsPbBr3 / Fe50Pd50 (10 nm)照光前後表面形貌比較 57 3-3-3 CsPbBr3 / Fe50Pd50 (10 nm)照光前後磁滯曲線比較 58 3-4 CsPbBr3元件照射雷射光前後磁阻變化比較圖 59 3-4-1 元件1 Co(10 nm)/CsPbBr3/Fe (5 nm)樣品分析 59 3-4-2 元件2 Fe(25 nm)/CsPbBr3/Fe (5 nm)樣品分析 61 3-4-3 元件3 Fe(25nm)/CsPbBr3/Fe (5 nm)樣品分析 63 第四章 結論 64 第五章 未來工作 65 參考文獻 66

    [1] H. Yuan, Y. Zhao, J. Duan, Y.Wang, X. Yang and Q. Tang, All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A, 2018, 6, 24324–24329.

    [2] C.Y. Huang, C. Zou, C. Mao, K.L. Corp, Y.C. Yao, Y.J. Lee, C.W. Schlenker, Alex K. Y. Jen and Lih Y. Lin, CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics 2017, 4, 2281−2289.

    [3] S. Yuan, Z.K. Wang, M.P. Zhuo, Q.S. Tian, Y. Jin, and L.S. Liao, Self-Assembled High Quality CsPbBr3 Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. ACS Nano 2018, 12, 9541−9548

    [4] A. Mandal, A. Ghosh, S. P. Senanayak, R. H. Friend, and S. Bhattacharyya, Thickness-Attuned CsPbBr3 Nanosheets with Enhanced p‑Type Field Effect Mobility. J. Phys. Chem. Lett. 2021, 12, 1560−1566.

    [5] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan, Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals. Inorg. Chem. 2017, 56, 2596−2601.

    [6] W. Chen, X. Xin, Z. Zang, X. Tang, C. Li, W. Hu, M. Zhou, J. Du, Tunable Photoluminescence of CsPbBr3 Perovskite Quantum Dots for Light Emitting Diodes Application. Journal of Solid State Chemistry 255 (2017) 115–120.

    [7] Thomson, W. (18 June 1857), "On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron", Proc. Royal Soc. Lond., 8: 546–550.

    [8] M. N. Baibich J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fel(001) Cr Magnetic Snperlattices. Physical Review Letters. 61 (21): 2472–2475.

    [9] Kei Yosida, Magnetic Proyerties of Cu-Mn Alloys. Physical Review. 106 (5): 893.

    [10] H. Yuasa, M. Yoshikawa, Y. Kamiguchi, K. Koi, H. Iwasaki, M. Takagishi, and M. Sahashi, Output enhancement of spin-valve giant magnetoresistance in current-perpendicularto-plane geometry. Journal of Applied Physics 92, 2646 (2002).

    [11] J. Wang, C. Zhang, H. Liu, R. McLaughlin, Y. Zhai, S. R. Vardeny, X. Liu, S. McGill, D. Semenov, H. Guo, R. Tsuchikawa, V.V. Deshpande, D. Sun, & Z. V. Vardeny, Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. NATURE COMMUNICATIONS (2019) 10:129

    [12] K. Sandeep, and C. P. Reshmi, Modulating the emission of CsPbBr3 perovskite nanocrystals via thermally varying magnetic field of La0.67Sr0.33Mn0.9(Ni/Co)0.1O3. AIP Advances 10, 035302 (2020).

    [13] S.S. Yeh, S.Y. Liu, C.C. Hsu, H.C. Hung, M.C. Niu, P.H. Lo, Y.C. Chao, W.C. Lin, Discrete interfacial effects of organic lead halide perovskite coating on magnetic underlayer: MAPbBr3/FePd heterostructure. Surfaces and Interfaces 24 (2021) 101133

    [14] F. Chen, C. Zhu, C. Xu, P. Fan, F. Qin, A. G. Manohari, J. Lu, Z. Shi, Q. Xu and A. Pan, Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. J. Mater. Chem. C, 2017, 5, 7739--7745

    [15] 陳均達, 鈷鐵硼薄膜的磁光柯爾效應及鐵磁共振研究. 國立臺灣師範大學,物理研究所, 一百零一年.

    [16] S. J. Kim, J. Byun, T. Jeon, H. M. Jin, H. R. Hong, and S. O. Kim, Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Appl. Mater. Interfaces 2018, 10, 2490−2495

    [17]陳廷豪, 無機鹵素鈣鈦礦/雌性金屬薄膜-雙層異質結構之形貌、磁性及熱穩定性分析. 國立臺灣師範大學, 物理研究所, 一百一十年

    無法下載圖示 電子全文延後公開
    2024/07/01
    QR CODE