簡易檢索 / 詳目顯示

研究生: 阮玟馨
Juan, Wen-Hsin
論文名稱: 金屬表面奈米塗層與疏水改質之抗腐蝕研究
A Study on Corrosion Resistance of Nano-coating and Hydrophobic Modification on Metal Surface
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 劉茂煌
Liu, Mao-Huang
林震煌
Lin, Cheng-Huang
呂家榮
Lu, Chia-Jung
口試日期: 2022/06/13
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 金屬表面處理鋯鈍化奈米塗層疏水改質自組裝薄膜
英文關鍵詞: surface treatment of metal, zirconium passivation, nano-coating, hydrophobic modification, self-assembled film
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300017
論文種類: 學術論文
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在將電鍍鋅鋼板進行鈍化處理,先在基材表面形成性質穩定且結構緻密的氧化層,再塗佈以溶膠-凝膠法所製備之具有矽-氧-鈦網狀結構的奈米粒子封孔劑於表面,其耐鹽霧時間比未鈍化的塗層更長,在電化學測量結果也顯示更好的抗腐蝕能力。另外,藉由探討鈍化液濃度、鈍化時間以及水洗水酸鹼值對抗蝕性之影響,可以得到最佳化的製程條件,進而達到最大的腐蝕保護效果。
    由於上述提到的封孔劑具有羥基,使水滴容易沾附於鋼板上,且在後續加工上也有所限制,本研究利用不含氟的十八烷基三氯矽烷對表面進行疏水改質,並與鋯鈍化皮膜結合,在表面形成疏水薄膜,接觸角可超過110°。此外,透過將樣品置於一般環境及腐蝕性溶液中,觀察接觸角隨著時間的改變,以測試薄膜在不同環境中的耐候性。
    本論文利用鹽霧試驗及鹽水浸泡測試模擬高溫高濕的環境,比較不同塗層的抗蝕性能。亦透過電化學交流阻抗及塔弗極化曲線進行分析,在更短的時間內評估皮膜之抗腐蝕能力。並且,在掃描式電子顯微鏡下可以看到樣品的真實形貌,再搭配能量色散X射線譜,得到各個元素的分布及含量比例,藉此確認材料確實有成膜於鋼板表面。

    The purpose of this study is to passivate the electro-galvanized steel sheet in order to form a stable and dense oxide layer on the surface of the substrate, and then a nanoparticle sealing agent with silicon-oxygen-titanium network structure prepared by sol-gel method is coated on the surface. Then, it becomes an eco-friendly zirconium passivation anti-corrosion coating, which has a longer salt spray resistance time than the untreated coating, and also shows better results in the electrochemical impedance measurement. In addition, by considering the effects of passivation solution concentration, passivation time and pH value of washing water on corrosion resistance, we can optimize the process conditions to achieve the maximum corrosion protection.
    Since the sealing agent mentioned above has hydroxyl groups, which make water droplets easily adhere to the steel plate, and it is also limited in subsequent processing. Therefore, in this study, fluorine-free N-octadecyl trichlorosilane was used to modify the surface into hydrophobic and combine it with zirconium passivation film to form a hydrophobic film on the surface with a contact angle of over 110°. In addition, by placing the samples in a general surrounding and a corrosive solution, the change of the contact angle with time was observed to test the weatherability of the film in different environments.
    In this thesis, the salt spray test and salt water immersion test are used to simulate the environment of high temperature and high humidity to compare the corrosion resistance of different coatings. Electrochemical impedance spectroscopy and tafel polarization curve are also analyzed to evaluate the corrosion resistance of the film in a shorter time. Furthermore, the real appearance of the sample can be seen under the scanning electron microscope, and then the distribution and content ratio of each element can be obtained with energy dispersive X-ray spectroscopy, thereby confirming that the material has indeed formed a film on the surface of the steel plate.

    第一章 緒論 1 1.1 研究背景 1 1.2 鋼鐵的腐蝕與保護 2 1.2.1 鋼鐵材料的腐蝕 2 1.2.2 腐蝕種類 3 1.2.3 腐蝕保護方法 6 1.3 鍍鋅鋼板之表面處理方法 9 1.3.1鈍化處理 10 1.3.2 抗指紋保護膜 12 1.3.3 塗油 12 1.4 溶膠-凝膠法 13 1.4.1 水解反應(Hydrolysis) 14 1.4.2 縮合反應(Condensation) 15 1.4.3 聚合反應(Polymerization) 15 1.4.4 薄膜塗佈方式 17 1.5 鋼板表面與塗層性能之分析方法 19 1.5.1 電化學阻抗譜(EIS) 19 1.5.2 塔弗極化曲線(Tafel) 22 1.5.3 掃描式電子顯微鏡(SEM) 24 1.5.4 能量色散X射線譜(EDS) 26 1.5.5 動態光散射粒徑分析儀(DLS) 27 1.5.6 鹽霧試驗(Salt-spray test) 28 1.6 疏水理論 29 1.6.1 蓮花效應 29 1.6.2 楊氏方程式(Young’s equation) 31 1.6.3 溫佐模型(Wenzel model) 32 1.6.4 卡西模型(Cassie-Baxter model) 33 1.7 疏水性質評估方法 34 1.7.1 接觸角 34 1.7.2 遲滯角 35 1.7.3 滾動角 35 1.8 E配方背景與本研究目的 36 第二章 實驗部分 37 2.1 藥品與儀器 37 2.1.1實驗藥品 37 2.1.2器材及設備 38 2.1.3 分析儀器 39 2.2 配方之前處理 44 2.2.1 E配方之製備 44 2.2.2 鋯鈍化液 44 2.2.3 低表面能物質溶液 44 2.3 實驗流程 45 2.3.1 環保型鋯鈍化抗蝕皮膜 46 2.3.2 表面疏水鋼板 47 2.3.3 鋯鈍化皮膜結合疏水性質之塗層 48 2.3.4 試片編號說明 49 第三章 結果與討論 50 3.1 環保型鋯鈍化抗蝕皮膜 50 3.1.1 鋯鈍化液與電鍍鋅鋼板表面反應 50 3.1.2 鈍化液濃度/鈍化時間對鋼板抗蝕性之影響 51 3.1.3 製程上水洗水pH值之差異 56 3.2 表面疏水改質之性能探討 59 3.2.1 低表面能物質與E配方之反應機制 59 3.2.2 塗佈方式之差異分析 60 3.2.3 不同疏水材料濃度 63 3.2.4 不同鋼板烘烤溫度 70 3.3 鋯鈍化皮膜結合疏水塗層之研究 73 3.3.1 皮膜性質測量結果 73 3.3.2 塗漆性測試 76 3.3.3 表面微結構觀察與元素分析 79 3.3.4 抗蝕效果比較 81 第四章 結論與未來展望 83 參考文獻 85

    1. Sankara Narayanan, T. Surface pretretament by phosphate conversion coatings-A review. Reviews in Advanced Materials Science. 2005, 9, 130-177.
    2. Ross, W. Preserving metals from oxidation. British patent. 1869, (3119).
    3. Eppensteiner, F. W.; Jenkins, M. R. Chromate conversion coatings. Metal Finishing. 1999, 97 (1, Supplement 1), 494-506.
    4. Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza, B.; Ingerman, L.; Klotzbach, J.; James, S. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. In Toxicological Profile for Chromium, Agency for Toxic Substances and Disease Registry (US), 2012.
    5. Lostak, T.; Maljusch, A.; Klink, B.; Krebs, S.; Kimpel, M.; Flock, J.; Schulz, S.; Schuhmann, W. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism. Electrochimica Acta. 2014, 137, 65-74.
    6. Costa, J. S.; Agnoli, R. D.; Ferreira, J. Z. Corrosion behavior of a conversion coating based on zirconium and colorants on galvanized steel by electrodeposition. Tecnologia em Metalurgia, Materiais e Mineração. 2015, 12 (2), 167-175.
    7. Fockaert, L.; Pletincx, S.; Ganzinga-Jurg, D.; Boelen, B.; Hauffman, T.; Terryn, H.; Mol, J. Chemisorption of polyester coatings on zirconium-based conversion coated multi-metal substrates and their stability in aqueous environment. Applied Surface Science. 2020, 508, 144771.
    8. Stromberg, C.; Thissen, P.; Klueppel, I.; Fink, N.; Grundmeier, G. Synthesis and characterisation of surface gradient thin conversion films on zinc coated steel. Electrochimica Acta. 2006, 52 (3), 804-815.
    9. Lunder, O.; Simensen, C.; Yu, Y.; Nisancioglu, K. Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium. Surface and Coatings Technology. 2004, 184 (2), 278-290.
    10. Taheri, P.; Lill, K.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H. Effects of Zinc Surface Acid-Based Properties on Formation Mechanisms and Interfacial Bonding Properties of Zirconium-Based Conversion Layers. The Journal of Physical Chemistry C. 2012, 116 (15), 8426-8436.
    11. Crick, C. R.; Parkin, I. P. Preparation and characterisation of super‐hydrophobic surfaces. Chemistry–A European Journal. 2010, 16 (12), 3568-3588.
    12. Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent studies on super-hydrophobic films. Molecular Materials and Functional Polymers. 2001, 31-41.
    13. Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews. 2007, 36 (8), 1350-1368.
    14. Tamura, H. The role of rusts in corrosion and corrosion protection of iron and steel. Corrosion Science. 2008, 50 (7), 1872-1883.
    15. Fontana, M. G.; Greene, N. D. Corrosion Engineering; McGraw-Hill, 1967.
    16. Kuruvila, R.; Thirumalai Kumaran, S.; Khan, M. A.; Uthayakumar, M. A brief review on the erosion-corrosion behavior of engineering materials. Corrosion Reviews. 2018, 36 (5), 435-447.
    17. 陳鴻賓. 不銹鋼的耐腐蝕性. 防蝕工程. 1992, 6 (1), 44-60.
    18. Jones, F. N.; Nichols, M. E.; Pappas, S. P. Organic coatings: science and technology; John Wiley & Sons, 2017.
    19. Zheng, S.; Li, J. Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. Journal of Sol-Gel Science and Technology. 2010, 54 (2), 174-187.
    20. 楊育銓. 電鍍鋅鋼板的複合型三價鉻鈍化處理. 國立臺灣大學, 2012.
    21. Tezdogan, T.; Demirel, Y. K. An overview of marine corrosion protection with a focus on cathodic protection and coatings. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike. 2014, 65 (2), 49-59.
    22. Yahalom, J. Corrosion Protection Methods. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P. Eds.; Elsevier, 2001; pp 1710-1713.
    23. Khan, M. S.; Kakar, F. K.; Saeed, M.; Khan, A.; Ali, B.; Ashraf, M.; Khan, S.; Tareen, A. W. Economic analysis of DC power sources used in impressed current cathodic protection of underground pipelines. Indian Journal of Science and Technology. 2021, 14 (10), 897-904.
    24. Ahmad, Z. Chapter 12 - Concrete corrosion. In Principles of Corrosion Engineering and Corrosion Control, Ahmad, Z. Ed.; Butterworth-Heinemann, 2006; pp 609-646.
    25. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; Pergamon Press, 1966.
    26. Milošev, I.; Frankel, G. conversion coatings based on zirconium and/or titanium. Journal of The Electrochemical Society. 2018, 165 (3), C127.
    27. Yoshimi, N.; Ando, S.; Matsuzaki, A.; Kubota, T.; Horisawa, T.; Okamoto, K. Properties of Chromium-free Coated Steel Sheet" GEO-FRONTIER-COAT". NKK technical review. 2001, 24-29.
    28. 金屬材料表面鋯系奈米皮膜的製備及性能研究. 青烽企業有限公司, 2013. http://www.ching-feng.com/upload/pdf/p-1_big5.pdf.
    29. 洪玉安. 環保型抗指紋劑塗佈熱浸鍍鋁鋅鋼板之散熱效果評估. 國立高雄應用科技大學, 2011.
    30. Sol-gel process. https://en.wikipedia.org/wiki/Sol%E2%80%93gel_process.
    31. Pillai, S. C.; Hehir, S. Sol-gel materials for energy, environment and electronic applications; Springer, 2017.
    32. Barczak, M.; McDonagh, C.; Wencel, D. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Microchimica Acta. 2016, 183 (7), 2085-2109.
    33. 黃尉桓. 堅固透明超疏水薄膜之製備與特性研究. 國立臺灣大學, 2014.
    34. Varela, A. I. G.; Aymerich, M.; García, D. N.; Martín, Y. C.; Beule, P. A. A. d.; Álvarez, E.; Bao-Varela, C.; Flores-Arias, M. T. Sol-Gel Glass Coating Synthesis for Different Applications: Active Gradient-Index Materials, Microlens Arrays and Biocompatible Channels. In Recent Applications in Sol-Gel Synthesis, 2017.
    35. Amokrane, G.; Falentin-Daudré, C.; Ramtani, S.; Migonney, V. A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. Innovation and research in biomedical engineering. 2018, 39 (4), 268-278.
    36. Frederichi, D.; Scaliante, M.; Bergamasco, R. Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants-a short review. Environmental Science and Pollution Research. 2021, 28 (19), 23610-23633.
    37. 林恩立. 抑制型、阻絕型與犧牲型塗層系統於含氯環境中之電化學交流阻抗頻譜分析. 國立成功大學, 2014.
    38. Loveday, D.; Peterson, P.; Rodgers, B. Evaluation of organic coatings with electrochemical impedance spectroscopy. JCT CoatingsTech. 2004, 8, 46-52.
    39. Wu, Y.; Koch, W.; Hamer, W.; Kay, R. L. Review of electrolytic conductance standards. Journal of Solution Chemistry. 1987, 16 (12), 985-997.
    40. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology. 2020, 11 (1), 1-13.
    41. Waters, N.; Connolly, R.; Brown, D.; Laskowski, B. Electrochemical impedance spectroscopy for coating evaluation using a micro sensor. In Annual Conference of the PHM Society, 2014; Vol. 6.
    42. Basics of Electrochemical Impedance Spectroscopy. Gamry Instruments, https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/.
    43. McIntyre, J. M.; Pham, H. Q. Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Progress in Organic Coatings. 1996, 27 (1-4), 201-207.
    44. Kakaei, K.; Esrafili, M. D.; Ehsani, A. Graphene and Anticorrosive Properties. In Graphene Surfaces - Particles and Catalysts, Interface Science and Technology, Elsevier, 2019; pp 303-337.
    45. Spange, S. Electrochemical Synthesis of Novel Polyaniline-Montmorillonite Nanocomposites and Corrosion Protection of Steel. Chemnitz University of Technology. 2006.
    46. Walock, M. J. Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems; The University of Alabama at Birmingham, 2012.
    47. Energy Dispersive X-ray Spectroscopy (EDS/EDX). Particle Technology Labs, https://reurl.cc/OAAqLv.
    48. Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews. 2016, 8 (4), 409-427.
    49. Dynamic light scattering. https://en.wikipedia.org/wiki/Dynamic_light_scattering.
    50. Hiromoto, S. Corrosion of calcium phosphate coated AZ31 magnesium alloy under a salt spray test. Materials Transactions. 2012, 53 (4), 700-706.
    51. Astuty, A.; Dalila, S. M. Z.; Liza, M. A.; Aezal, M. F. Evaluation of corrosion performance of zinc-plated underhood automotive fasteners using salt spray test. In Key Engineering Materials, 2015; Trans Tech Publ: Vol. 659, pp 560-564.
    52. Qian, X.; Jin, K.; Lu, S.; Lv, L. Research on salt spray test of power facilities based on standardized laboratory construction. In IOP Conference Series: Materials Science and Engineering, 2020; IOP Publishing: Vol. 782, p 032013.
    53. Zhang, Y.; Zhang, Z.; Yang, J.; Yue, Y.; Zhang, H. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer. Nanomaterials (Basel). 2021, 12 (1).
    54. Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997, 202 (1), 1-8.
    55. Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; Ras, R. H. A.; van Ommen, J. R. Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing. Chemical Engineering Research and Design. 2020, 155, 48-65.
    56. Zeng, Q.; Zhou, H.; Huang, J.; Guo, Z. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale. 2021, 13 (27), 11734-11764.
    57. Ramachandran, R.; Nosonovsky, M. Vibrations and Spatial Patterns Change Effective Wetting Properties of Superhydrophobic and Regular Membranes. Biomimetics. 2016, 1 (1), 4-20.
    58. 蕭佳安. 電鍍鋅鋼板無鉻抗蝕皮膜與電化學阻抗行為研究. 國立臺灣師範大學, 2020.

    無法下載圖示 電子全文延後公開
    2025/06/13
    QR CODE