透過您的圖書館登入
IP:3.144.16.254
  • 期刊

以石墨烯氧化物為介面緩衝層改善二氧化鈦電阻式記憶體元件之阻態切換特性

Improvement of Resistive Switching Characteristic of Titanium Oxide Random Access Memory Using Graphene Oxide as an Interface Buffer Layer

摘要


本研究利用新型材料石墨烯氧化物當做二氧化鈦的緩衝層結構,來製做新型電阻式記憶體。由於電阻式記憶體具備低操作電壓,切換快速,以及具有高密度三維堆疊整合的能力,因此近期相關研究技術廣泛受到注目。首先,二氧化鈦是一種具有n型半導體特性的金屬氧化物,近年來,已被研究指出,其窄能隙的半導體特性,可做為薄膜電晶體的通道材料。更吸引人的是此通道材料可在似室溫溫度下沉積,但遺憾的是在低操作電壓下,此新型通道材料有著較大的寄生電阻,阻礙了二氧化鈦成為下一代的薄膜電晶體新型通道材料的發展。然而,二氧化鈦具備相當高的介電常數(結晶相可達90以上)、高結晶性,以及高濃度氧空缺因此,近期以此二氧化鈦半導體材料為主體的電阻式記憶體已被提出且廣泛研究,期盼此高密度電阻式記憶體未來能成為新一代的非揮發性記憶體產品。然而,目前所提出的二氧化鈦基電阻式記憶體(RRAM)都存在著較高操作電流和較大操作電壓。本研究提出一種結合石墨烯氧化物的雙層式電阻式記憶體。我們將石墨烯氧化物當做二氧化鈦的緩衝層,藉以改善元件操作時的導通電壓,目前實驗結果指出,在和單層的二氧化鈦相比下,結合石墨烯氧化物的雙層式電阻式記憶體具有較好的電流切換特性,以及較大高低阻態切換視窗。

並列摘要


In this study, we adopt the graphene-oxide (GO) -buffed titanium oxide (TiO_x) as a resistance change layer for random access memory (RRAM) application. The RRAM features many merits of low operation voltage, fast switching speed and high-density 3D stacked capability that currently attracts much attention. The TiOx has been used as TFT channel due to its narrow bandgap and n-type semiconductor characteristic. However, the large parasitic resistance in conductive TFT channel measured at a low driving voltage hinders the feasibility and integration with next-generation display. Fortunately, the semiconductor-like TiOx has been proposed as a candidate material for RRAM application because of its large dielectric constant (up to 90 at a crystallized phase), high crystallinity and vacancy-rich bulk. However, the high operating current and voltage limit the technology development. In this work, we adopt TiOx/GO bilayer structure as resistance layer and the device performance showed the lower turn-on voltage and better resistive switching characteristics than conventional TiOx RRAM device.

並列關鍵字

TiOx Graphene oxide Electron hopping RRAM

延伸閱讀