透過您的圖書館登入
IP:3.144.113.197
  • 學位論文

PPV-b-PMMA嵌段共聚高分子快速自組裝製程開發之研究

Process Development for Rapid Self-Assembly of PPV-b-PMMA Block Copolymer

指導教授 : 林唯芳

摘要


硬桿-柔曲嵌段共聚物(rod-coil block copolymers)因其在奈米微影技術及可撓曲性光電材料等領域的龐大應用潛力而一直是學術界的研究重點。藉由調控鏈段間的作用力強度與體積分率,可以獲得各種有序微相分離的奈米尺度結構。然而,在過去的研究中,由於硬桿–柔曲嵌段共聚物受到硬鏈段間過強的作用力,以及硬鏈段與軟鏈段間也同時具有過強作用力的影響,導致此類共聚物即使在相當高溫且相當長的時間進行退火,也難以形成有序結構,前人的對策多利用化學改質的方式來抑制過強的作用力,以促進有序結構的形成,但須耗時耗費同時也阻礙了電子傳遞跟原本良好的光電特性。 在本研究中,我們發展了一套方法來協助PPV-b-PMMA這一嵌段共聚高分子來有效的形成高度有序的奈米結構並對其製程進行改良開發,藉由在熱退火時加入高沸點的選擇性添加劑(PV、DBP與NEP),來增加高分子的流動性,使得硬桿-柔曲嵌段共聚物便能在較低溫與較短時間內達到熱平衡與有序結構。然而,由於這些高沸點的添加劑無法在熱退火的過程中揮發完全,並可能會影響到材料本身的功能性與奈米結構。 因此,我們改良了兩種熱退火的系統,分別稱為開放系統與真空系統,讓高沸點添加劑有更多空間可以協助揮發與有更高的動能來提升鏈段的遷移能力。藉由適當的控制與利用熱退火環境,實驗後我們不但可以在製程中以不改變高分子化學結構的方式,且在更低的溫度及更短的退火時間內就獲得更為高度有序的奈米結構,例如在真空退火系統中僅只需1.5hr便可形成極高度規整的層狀結構,且在退火過程中能除去所有的添加劑。使用本技術為自組裝共聚物形成有序的結構提供有效及節省能源的製程方法。

並列摘要


Rod-coil block copolymers have long been a research interest for their great potentials in nanolithography and flexible optoelectronics applications. By adjusting interactions between segments and their volume fractions, one can acquire various nanoscale morphologies. However, the segment interactions of rod-rod and rod-coil of the copolymers are very strong, the formation of ordered structure is rather difficult even they are annealed under a fairly high temperature for a long time. To promote the formation of ordered structure of rod-coil block copolymer, chemical modifications of side chain or main chain are usually used to suppress interactions, but that affects the original physical properties of pristine copolymers. In this work, we’ve developed a facile method to form a highly ordered nanostructure of PPV-b-PMMA at low temperature and short time without any chemical modification. By adding high boiling point selective additives in the copolymer, the thermodynamic equilibrium of ordered structure can be reached with relatively low temperature and short time. If the high boiling point additive cannot remove during the annealing process completely that will affect the chemical and physical properties of the copolymer. Therefore, we further improve the process by treating the samples under different annealing environment. Two new systems are investigated: open system and vacuum system as compared with the original confined system (sample annealed in a metal washer). The additive has more room to facilitate the movement of copolymer and to be evaporated effectively during the annealing. By optimizing the annealing condition, we can not only retain the nanostructure of the copolymer, but also improve the quality of ordered structure without presence of any additive. For example, vaccum system can help copolymer to form structure in 1.5hr annealing period. This technique provides an efficient and energy-saving process for self-assembly copolymers to form highly ordered structures.

參考文獻


1. F. S. Bates.; F. S.; G. H. Annu. Fredrickson., Block copolymer thermodynamics: theory and experiment. Rev. Phys. Chem. 1990, 41, 525.
2. F. S. Bates., Polymer-polymer phase behavior. Science 1991, 251, 898.
3. I. W. Hamley., The Physics of the Block Copolymers, Oxford University Press : New York, 1998.
4. M. Lazzari.; M. A. Lopez-Quintela., Block Copolymers as a Tool for Nanomaterial Fabrication. Adv. Mater 2003, 15, 1583.
5. C. Park.; J. Yoo.; E. L. Thomas., Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725.

延伸閱讀