透過您的圖書館登入
IP:3.135.246.193
  • 學位論文

陽離子型介面活性劑增強碘化鉀/氯胺-T氧化luminol之化學發光及應用

Enhancement of Chemiluminescence by cationic surfactant for the Oxidation of Luminol with Pottasium Iodide/Chloramine-T and Its Applications

指導教授 : 林萬寅
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要是利用停止流光譜儀(stopped-flow spectro -metry)發展以陽離子型介面活性劑cetyltrimethylammonium chloride (CTAC) 增強『碘化鉀/氯胺-T(chloramine-T)』氧化luminol的化學發光系統,並探討影響化學發光的因素,包括pH值、反應物(碘化鉀和氯胺-T)濃度、介面活性劑濃度等。本系統的化學發光隨著pH值上升而有增強的趨勢,在pH 10.0時CTAC有最好的增強效應,KI與CT都在0.025 mM有最大的發光強度,而介面活性劑(CTAC)濃度在大於CMC值後,隨著濃度的增加,化學發光有增強的趨勢,在20 mM達到飽和,因此本化學發光系統之最佳化條件為:在pH控制在約10.0的鹼性條件下,添加20 mM的CTAC可增強0.05 mM luminol、0.025 mM 碘化鉀和0.025 mM 氯胺-T的化學發光強度約80倍左右,推測是因luminol在鹼性條件下帶負電,與水溶液中帶負電的碘離子和氯胺-T均容易聚集在正電微胞表面附近,且氯胺-T氧化碘化鉀所產生的碘分子親水性低,易聚集在微胞內,而拉近了luminol與碘分子的距離,增強了化學發光效率。因抗氧化劑會破壞化學發光所產生的自由基,而造成化學發光的效率降低,因此本系統可利用此機制檢測不同種類與濃度的抗氧化劑,例如:trolox(0~19μM)、BHA(0~5μM)、BHT(0~14μM)、GSH(0~16μM)、Ascorbic acid(0~30μM)、胺基酸(Cysteine:0~14μM ; Tyrosine:0~50μM)與類黃酮(3,6-dihydroxyflavone:0~20μM ; 3,7-dihydroxyflavone:0~ 50μM)等。比較不同鍊長的陽離子型介面活性劑(DTAC、HPC)對本系統的增強效果,添加50mM的DTAC可增強化學發光約70倍左右,而添加1 mM的HPC可增強約2倍左右,推測化學發光強度與微胞大小有關。未來將持續對本系統的機制作更進一步的探討,以及增加其應用性。

關鍵字

化學發光

並列摘要


This study applied stopped-flow spectrometry to investigate the enhancement of chemiluminescence (CL) from the oxidation of luminol with KI/Chloramine-T (CT) by cationic surfactant cetyltrimethyl-ammonium chloride (CTAC). Various factors, including pH, concentration of reagents (KI, CT, and CTAC), that affect the CL intensity were also discussed and optimized. The CL of this system increased with increasing pH and the maximum enhancement occurred at pH 10.0. The optimized condition for this CL system is 20 mM CTAC, 0.025 mM luminol, 0.025 mM KI and 0.025 mM CT at pH 10.0; the CL intensity was thereby enhanced about 80-fold. It is suggested that the negatively charged luminol, iodide and CT will all be attracted around the positively charged micelle surface. In addition, the iodine produced from the oxidation of CT and KI is hydrophobic and easily enters the micelle. The proximity of the reagents involved in the CL reaction will largely improve the overall CL efficient, leading to a dramatic enhancement in CL emission. Other cationic surfactants enhance the intensity of CL system to various extents: 70-fold for 50 mM DTAC, only 2-fold for 1 mM HPC. The results indicate that the CL enhancement is related to the size of micelle. In addition, anionic surfactant SDS and β-cyclodextrin exhibit essentially no enhancement. The antioxidants destroy the radicals involved in the CL reaction, causing a decrease in CL emission. Thereby, the CL system has been applied to determine several antioxidants such as trolox (0~19 μM), BHA (0~5 μM), BHT (0~14 μM), GSH (0~16 μM), ascorbic acid (0~30 μM), cysteine (0~14 μM), tyrosine(0~50μM), and flavonoids (3,6-dihydroxyflavone:0~20 μM ; 3,7-dihydroxyflavone:0~50 μM).

並列關鍵字

chemiluminescence

參考文獻


20. Lori L. K.; Timothy A. N.,Anal. Chem. 1984, 56(8), 1539-1542.
1. Campbell, A. K., Chemiluminescence: Principles and Applications in Biology and Medicine. New York, 1988, 19-67
3. Seitz, W. R.; Neary, M. P., Anal. Chem. 1974, 46(2), A188-A200.
10. Safavi, A.; Karimi, M. A., Anal. Chim. Acta. 2002, 468(1), 53-63.
12. Gundermann, K.-D.; McCapra, F., Chemiluminescence in organic chemistry. 1986, 89-92.

延伸閱讀